98%
921
2 minutes
20
RAF dimer inhibitors offer therapeutic potential in RAF- and RAS-driven cancers. The utility of such drugs is predicated on their capacity to occupy both RAF protomers in the RAS-RAF signaling complex. Here we describe a method to conditionally quantify drug-target occupancy at selected RAF protomers within an active RAS-RAF complex in cells. RAF target engagement can be measured in the presence or absence of any mutant KRAS allele, enabling the high-affinity state of RAF dimer inhibitors to be quantified in the cellular milieu. The intracellular protomer selectivity of clinical-stage type II RAF inhibitors revealed that ARAF protomer engagement, but not engagement of BRAF or CRAF, is commensurate with inhibition of MAPK signaling in various mutant RAS cell lines. Our results support a fundamental role for ARAF in mutant RAS signaling and reveal poor ARAF protomer vulnerability for a cohort of RAF inhibitors undergoing clinical evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2023.07.019 | DOI Listing |
J Enzyme Inhib Med Chem
December 2025
Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India.
The mitogen-activated protein kinase (MAPK) pathway-also known as the RAS/RAF/MEK/ERK pathway-is a critical signalling cascade involved in regulating cell growth, proliferation, and survival. First discovered in the early 1980s, the pathway's extracellular signal-regulated kinase (ERK) subfamily was identified in the 1990s. The ERK family includes several isoforms-ERK1, ERK2, ERK3, ERK5, and ERK6-with ERK1 (MAPK3) and ERK2 (MAPK1) being the most well-characterised and playing central roles in MAPK signalling.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany.
Introduction: The prognosis of anaplastic thyroid carcinoma (ATC) remains poor. Mutation-based targeted therapies and immune checkpoint inhibitors (ICI) have gained increasing importance in the treatment of advanced tumor stages. This study aimed to investigate whether mutation-based neoadjuvant therapy can convert an initially unresectable tumor into a resectable state, optimizing local tumor control and prolonging overall survival.
View Article and Find Full Text PDFMol Ther Oncol
September 2025
Translational Oncology Division, Oncohealth Institute, IIS - Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain.
Anti-epidermal growth factor receptor (EGFR) therapies are the most recommended first-line treatment for wild-type unresectable metastatic colorectal cancer (CRC) according to the European Society for Medical Oncology guidelines. However, primary resistance renders this treatment ineffective for almost 40% of patients. Our previous work identified Aurora kinase A (AURKA) as a key resistance driver through non-canonical, Hippo-independent Yes-associated protein 1 (YAP1) activation.
View Article and Find Full Text PDFTrends Mol Med
September 2025
Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften (ISAS) e.V., 44139 Dortmund, Germany. Electronic address:
Dysregulation of the RAF-MEK-ERK1/2 pathway is involved in the pathoetiology of many diseases. Its central role in cancer has led to the development of drugs targeting upstream receptors, RAS, and kinases in the extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) signaling cascade. The use of these drugs in cancer therapy - together with ongoing monitoring of their effectiveness, evolving side-effects, and resistance mechanisms - has expanded our knowledge of both the physiological and pathological functions of ERK1/2 and could thus provide potential alternative therapeutic strategies.
View Article and Find Full Text PDFThe intrinsic ability of cancer cells to evade death underpins tumorigenesis, progression, metastasis and the survival of drug-tolerant persister (DTP) cells. Herein, we discovered that when activated, the small GTPase ARF6 plays a central role in tumor survival by facilitating expression of the BRAF oncoprotein. Tumor-specific deletion caused a significant reduction in BRAF protein and MAPK signaling and prevented rapid tumor progression.
View Article and Find Full Text PDF