The integration of artificial intelligence (AI) and all new technologies (NTs) into enhanced recovery after surgery (ERAS) protocols offers significant opportunities to address implementation challenges and improve patient care. Despite the proven benefits of ERAS, limitations such as resistance to change, resource constraints, and poor interdepartmental communication persist. AI can play a crucial role in overcoming ERAS implementation barriers by simplifying clinical plans, ensuring high compliance, and creating patient-centered approaches.
View Article and Find Full Text PDFSepsis is one of the leading causes of mortality in hospital settings, and early diagnosis is a crucial challenge to improve clinical outcomes. Artificial intelligence (AI) is emerging as a valuable resource to address this challenge, with numerous investigations exploring its application to predict and diagnose sepsis early, as well as personalizing its treatment. Machine learning (ML) models are able to use clinical data collected from hospital Electronic Health Records or continuous monitoring to predict patients at risk of sepsis hours before the onset of symptoms.
View Article and Find Full Text PDFMinerva Urol Nephrol
June 2024
The development of artificial intelligence (AI) is disruptive and unstoppable, also in medicine. Because of the enormous quantity of data recorded during continuous monitoring and the peculiarity of our specialty where stratification and mitigation risk are some of the core aspects, anesthesiology and postoperative intensive care are fertile fields where new technologies find ample room for expansion. Recently, research efforts have focused on the development of a holistic technology that globally embraces the entire perioperative period rather than a fragmented approach where AI is developed to carry out specific tasks.
View Article and Find Full Text PDFThis systematic review examines the recent use of artificial intelligence, particularly machine learning, in the management of operating rooms. A total of 22 selected studies from February 2019 to September 2023 are analyzed. The review emphasizes the significant impact of AI on predicting surgical case durations, optimizing post-anesthesia care unit resource allocation, and detecting surgical case cancellations.
View Article and Find Full Text PDF