Properly balancing microbial responses by the innate immune system through pattern recognition receptors (PRRs) is critical for intestinal immune homeostasis. Ring finger protein 186 (RNF186) genetic variants are associated with inflammatory bowel disease (IBD). However, functions for the E3 ubiquitin ligase RNF186 are incompletely defined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
Balancing microbial-induced cytokines and microbial clearance is critical at mucosal sites such as the intestine. How the inflammatory bowel disease (IBD)-associated gene regulates this balance is unclear. We found that macrophages from IBD-risk rs6426833 carriers in the region showed reduced cytokines to stimulation through multiple pattern recognition receptors (PRRs).
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2021
Background & Aims: TNFSF15 genetic variants leading to increased TNF superfamily member 15 (TNFSF15) expression confer risk for inflammatory bowel disease (IBD), and TNFSF15 is being explored as a therapeutic target in IBD patients. Although the focus for TNFSF15-mediated inflammatory outcomes has been predominantly on its action on T cells, TNFSF15 also promotes inflammatory outcomes in human macrophages. Given the critical role for macrophages in bacterial clearance, we hypothesized that TNFSF15 promotes antimicrobial pathways in human macrophages and that macrophages from TNFSF15 IBD risk carriers with higher TNFSF15 expression have an advantage in these antimicrobial outcomes.
View Article and Find Full Text PDFCommon genetic risk variants associated with multiple immune-mediated diseases are a major determinant of interindividual variability in pattern-recognition receptor (PRR)-induced cytokines in myeloid cells. However, how myeloid cell-intrinsic IRF5 regulates the multiple distinct checkpoints mediating T cell outcomes in vivo and IRF5-dependent mechanisms contributing to these distinct checkpoints are not well defined. Using an in vivo Ag-specific adoptive T cell transfer approach into mice, we found that T cell-extrinsic IRF5 regulated T cell outcomes at multiple critical checkpoints, including chemokine-mediated T cell trafficking into lymph nodes and PDK1-dependent soluble Ag uptake, costimulatory molecule upregulation, and secretion of Th1 (IL-12)- and Th17 (IL-23, IL-1β, and IL-6)-conditioning cytokines by myeloid cells, which then cross-regulated Th2 and regulatory T cells.
View Article and Find Full Text PDFSTAT proteins can regulate both pro- and anti-inflammatory cytokine signaling. Therefore, identifying consequences of modulating expression of a given STAT is ultimately critical for determining its potential as a therapeutic target and for defining the mechanisms through which immune-mediated disease variants in genes contribute to disease pathogenesis. Genetic variants in the region are associated with multiple immune-mediated diseases, including inflammatory bowel disease (IBD).
View Article and Find Full Text PDFLACC1 genetic variants are associated with multiple immune-mediated diseases. However, laccase domain containing-1 (LACC1) functions are incompletely defined. We find that upon stimulation of the pattern-recognition receptor (PRR) NOD2, LACC1 localizes to the endoplasmic reticulum (ER) and forms a complex with ER-stress sensors.
View Article and Find Full Text PDFGenetic variants in the // region are associated with immune-mediated diseases, including inflammatory bowel disease (IBD). However, how STAT3 and STAT5 regulate the critical balance between pro- and anti-inflammatory cytokines and how common disease-associated genetic variants (e.g.
View Article and Find Full Text PDFObjective: The interleukin (IL)23 pathway contributes to IBD pathogenesis and is being actively studied as a therapeutic target in patients with IBD. Unexpected outcomes in these therapeutic trials have highlighted the importance of understanding the cell types and mechanisms through which IL23 regulates immune outcomes. How IL23 regulates macrophage outcomes and the consequences of the IL23R R381Q IBD-protective variant on macrophages are not well defined; macrophages are key players in IBD pathogenesis and inflammation.
View Article and Find Full Text PDFIntestinal tissues are continuously exposed to microbial products that stimulate pattern-recognition receptors (PRRs). Ongoing PRR stimulation can confer epigenetic changes in macrophages, which can then regulate subsequent immune outcomes and adaptation to the local environment. Mechanisms leading to these changes are incompletely understood.
View Article and Find Full Text PDFCommon IFN regulatory factor 5 () variants associated with multiple immune-mediated diseases are a major determinant of interindividual variability in pattern recognition receptor (PRR)-induced cytokines in macrophages. PRR-initiated pathways also contribute to bacterial clearance, and dysregulation of bacterial clearance can contribute to immune-mediated diseases. However, the role of IRF5 in macrophage-mediated bacterial clearance is not well defined.
View Article and Find Full Text PDFHomeostasis at mucosal surfaces requires cross-talk between the environment and barrier epithelial cells. Disruption of barrier function typifies mucosal disease. Here we elucidate a bifunctional role in coordinating this cross-talk for the inflammatory bowel disease risk-gene .
View Article and Find Full Text PDFOptimal regulation of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is essential for controlling bacterial infections and inflammatory disorders. Chronic NOD2 stimulation induces non-responsiveness to restimulation, termed NOD2-induced tolerance. Although the levels of the NOD2 adaptor, RIP2, are reported to regulate both acute and chronic NOD2 signalling, how RIP2 levels are modulated is unclear.
View Article and Find Full Text PDFFunctional consequences for most inflammatory disease-associated loci are incompletely defined, including in the LACC1 (C13orf31) region. Here we show that human peripheral and intestinal myeloid-derived cells express laccase domain-containing 1 (LACC1); LACC1 is expressed in both the cytoplasm and mitochondria. Upon NOD2 stimulation of human macrophages, LACC1 associates with the NOD2-signalling complex, and is critical for optimal NOD2-induced signalling, mitochondrial ROS (mtROS) production, cytokine secretion and bacterial clearance.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is characterized by dysregulation in both cytokines and responses to intestinal microbes, and proper regulation of pattern recognition receptor (PRR) signaling is critical for intestinal immune homeostasis. Altered functions for the IBD risk locus containing rs7554511, which encompasses the C1orf106 gene (recently named INAVA), and roles for the protein encoded by the INAVA gene are unknown. Here, we investigated the role of INAVA and INAVA genotype in regulating PRR-initiated outcomes in primary human cells.
View Article and Find Full Text PDFEfficient clearance of pro-inflammatory macrophages from tissues after resolution of a challenge is critical to prevent prolonged inflammation. Defects in clearance can contribute to conditions such as inflammatory bowel disease, and thus may be therapeutically targetable. However, the signaling pathways that induce termination of pro-inflammatory macrophages are incompletely defined.
View Article and Find Full Text PDFJAK2 genetic variants are associated with inflammatory bowel disease (IBD) and JAK inhibitors are being evaluated for therapy targeting immune-mediated diseases, including IBD. As JAK pathway-mediated cytokine regulation varies across cell types and stimulation conditions, we examined how JAK signaling and IBD-associated JAK2 variants regulate distinct acute and chronic microbial product exposure outcomes in human myeloid cells, consistent with the conditions of initial entry and ongoing intestinal tissue residence, respectively. Macrophages from controls and ulcerative colitis patients carrying the IBD-risk rs10758669 CC genotype showed increased JAK2 expression and nucleotide-binding oligomerization domain 2-induced JAK2 phosphorylation relative to AA carriers.
View Article and Find Full Text PDFInterferon regulatory factor 5 (IRF5) regulates inflammatory M1 macrophage polarization, and disease-associated IRF5 genetic variants regulate pattern-recognition-receptor (PRR)-induced cytokines. PRR-stimulated macrophages and M1 macrophages exhibit enhanced glycolysis, a central mediator of inflammation. We find that IRF5 is needed for PRR-enhanced glycolysis in human macrophages and in mice in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2015
Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown.
View Article and Find Full Text PDFObjective: IBD is characterised by dysregulated intestinal immune homeostasis and cytokine secretion. In the intestine, properly regulating pattern recognition receptor (PRR)-mediated signalling and cytokines is crucial given the ongoing host-microbial interactions. TPL2 (MAP3K8, COT) contributes to PRR-initiated pathways, yet the mechanisms for TPL2 signalling contributions in primary human myeloid cells are incompletely understood and its role in intestinal myeloid cells is poorly defined.
View Article and Find Full Text PDFProper regulation of microbial-induced cytokines is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, chronic NOD2 stimulation in macrophages decreases cytokines upon pattern recognition receptor (PRR) restimulation; cytokine attenuation to PRR stimulation is similarly observed in intestinal macrophages.
View Article and Find Full Text PDFMicrobial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2014
Inflammatory diseases are characterized by dysregulated cytokine production. Altered functions for most risk loci, including the inflammatory bowel disease and leprosy-associated tumor necrosis factor ligand superfamily member 15 (TNFSF15) region, are unclear. Regulation of pattern-recognition-receptor (PRR)-induced signaling and cytokines is crucial for immune homeostasis; TNFSF15:death receptor 3 (DR3) contributions to PRR responses have not been described.
View Article and Find Full Text PDFFine-tuning of cytokine-inducing pathways is essential for immune homeostasis. Consistently, a dysregulated increase or decrease in pattern-recognition receptor (PRR)-induced signaling and cytokine secretion can lead to inflammatory bowel disease. Multiple gene loci are associated with inflammatory bowel disease, but their functional effects are largely unknown.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune homeostasis and cytokine secretion. Multiple loci are associated with IBD, but a functional explanation is missing for most. Here we found that pattern-recognition receptor (PRR)-induced cytokine secretion was diminished in human monocyte-derived dendritic cells (MDDC) from rs7282490 ICOSLG GG risk carriers.
View Article and Find Full Text PDF