Publications by authors named "Mateusz Olszewski"

The interfacial properties of miktoarm star polymers composed of poly(divinylbenzene) (PDVB) cores with poly(ethylene oxide) (PEO) hydrophilic arms and poly(-butyl acrylate) (PBA) or poly(lauryl acrylate) (PLA) hydrophobic arms at the oil/water interface are reported. The kinetics of miktoarm star polymer adsorption from the oil phase depended on the polymer concentration. This suggested that the rate-determining step was the adsorption and penetration of the polymer onto and through the interface.

View Article and Find Full Text PDF

Bottlebrush polymers (BB) have emerged as compelling candidates for biosystems to face tribological challenges, including friction and wear. This study provides a comprehensive assessment of an engineered triblock BB polymer's affinity, cell toxicity, lubrication, and wear protection in both in vitro and in vivo settings, focusing on applications for conditions like osteoarthritis and dry eye syndrome. Results show that the designed polymer rapidly adheres to various surfaces (e.

View Article and Find Full Text PDF

Fungal pathogens are considered as serious factors for deadly diseases and are a case of medical concern. Invasive fungal infections also complicate the clinical course of COVID-19, leading to a significant increase in mortality. Furthermore, fungal strains' multidrug resistance has increased the demand for antifungals with a different mechanism of action.

View Article and Find Full Text PDF

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research.

View Article and Find Full Text PDF

Organometallic half-sandwich complexes [(η-Cp)IrCl(L)]PF () and [(η-Cp)RhCl(L)]PF () were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino--(2,2'-bipyridin-5-yl)benzenesulfonamide ligand () and ammonium hexafluorophosphate. The crystal structures of , , and were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques.

View Article and Find Full Text PDF

Anthraquinones have attracted considerable interest in the realm of cancer treatment owing to their potent anticancer properties. This study evaluates the potential of a series of new anthraquinone derivatives as anticancer agents for non-small-cell lung cancer (NSCLC). The compounds were subjected to a range of tests to assess their cytotoxic and apoptotic properties, ability to inhibit colony formation, pro-DNA damage functions, and capacity to inhibit the activity of tyrosine kinase proteins (PTKs).

View Article and Find Full Text PDF

Heterocyclic pharmacophores such as thiazole and quinoline rings have a significant role in medicinal chemistry. They are considered privileged structures since they constitute several Food and Drug Administration (FDA)-approved drugs for cancer treatment. Herein, we report the synthesis, in silico evaluation of the ADMET profiles, and in vitro investigation of the anticancer activity of a series of novel thiazolyl-hydrazones based on the 8-quinoline (1a-c), 2-quinoline (2a-c), and 8-hydroxy-2-quinolyl moiety (3a-c).

View Article and Find Full Text PDF

With the current massive increases in drug-resistant microbial infection as well as the significant role of fungal infections in the death toll of COVID-19, discovering new antifungals is extremely important. Natural and synthetic xanthones are promising derivatives, although only few reports have demonstrated their antifungal mechanism of action in detail. Newly synthetized by us xanthone derivative 44 exhibited strong antifungal activity against reference and fluconazole resistant C.

View Article and Find Full Text PDF
Article Synopsis
  • Star polymers are gaining attention for their adjustable properties and effectiveness as stabilizers for Pickering emulsions.
  • They were synthesized using a method called ARGET ATRP, utilizing PEO with specific ATRP functionality and divinylbenzene as a crosslinker.
  • The study found that PEO stars behave like a hybrid between particles and linear/branched polymers at oil-water interfaces, with interfacial tension influenced by the type of oil used.
View Article and Find Full Text PDF

The mechanisms of antigen processing and presentation play a crucial role in the recognition and targeting of cancer cells by the immune system. Cancer cells can evade the immune system by downregulating or losing the expression of the proteins recognized by the immune cells as antigens, creating an immunosuppressive microenvironment, and altering their ability to process and present antigens. This review focuses on the mechanisms of cancer immune evasion with a specific emphasis on the role of antigen presentation machinery.

View Article and Find Full Text PDF

Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media.

View Article and Find Full Text PDF

Drug nanocarriers (NCs) capable of crossing the vascular endothelium and deeply penetrating into dense tissues of the CNS could potentially transform the management of neurological diseases. In the present study, we investigated the interaction of bottle-brush (BB) polymers with different biological barriers and and compared it to nanospheres of similar composition. internalization and permeability assays revealed that BB polymers are not internalized by brain-associated cell lines and translocate much faster across a blood-brain barrier model compared to nanospheres of similar hydrodynamic diameter.

View Article and Find Full Text PDF

Telomerase reactivation is one of the hallmarks of cancer, which plays an important role in cellular immortalization and the development and progression of the tumor. Chemical telomerase inhibitors have been shown to trigger replicative senescence and apoptotic cell death both in vitro and in vivo. Due to its upregulation in various cancers, telomerase is considered a potential target in cancer therapy.

View Article and Find Full Text PDF

The anticancer properties of quinolones is a topic of interest among researchers in the scientific world. Because these compounds do not cause side effects, unlike the commonly used cytostatics, they are considered a promising source of new anticancer drugs. In this work, we designed a brief synthetic pathway and obtained a series of novel 8-phenyltetrahydroquinolinone derivatives functionalized with benzyl-type moieties at position 3.

View Article and Find Full Text PDF

The aim of this study was to analyse the changes in refraction, depending on the length of the eyeball, in patients who had undergone cataract surgery using the phacoemulsification method and to assess the stability of refraction. A total of 90 patients (46 to 85 years of age) took part in the study and were divided into three groups: emmetropic, hypermetropic, and myopic. Two types of intraocular lenses were used: Bausch (Akreos AO) and Rayner (C-flex).

View Article and Find Full Text PDF

Water-soluble and biocompatible polymers are of interest in biomedicine as the search for alternatives to PEG-based materials becomes more important. In this work, the synthesis of a new sulfoxide-containing monomer, 2-(methylsulfinyl)ethyl acrylamide (MSEAM), is reported. Well-defined polymers were prepared by photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (PICAR ATRP).

View Article and Find Full Text PDF

Pyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the most commonly diagnosed cancer in Europe and the United States and the second leading cause of cancer related mortality. A therapeutic strategy used for the treatment of CRC involves targeting the intracellular levels of reactive oxygen species (ROS). In this study, we synthesized a series of novel tetrahydroquinolinones and assessed their ability to inhibit CRC growth and proliferation by evoking cellular stress through ROS.

View Article and Find Full Text PDF

Mitochondrial targeting plays an important role in anticancer therapy. The Mn(III)-promoted cyclization of 5-(1H-indol-3-yl)-3-oxopentanoic acid allow to obtain novel substituted carbazole derivatives that can act as mitochondria-disruptive agents. The starting materials used for the synthesis of these new aminocarbazoles are oxopentanoate derivatives of tryptophan.

View Article and Find Full Text PDF

The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands.

View Article and Find Full Text PDF

Lung cancer is considered to account for approximately one-fifth of all malignant tumor-related deaths worldwide and is therefore one of the most lethal malignancies. Pyrazole scaffold possesses a wide range of biological and pharmacological activities, which play important roles in medicinal chemistry. The present study reports the synthesis and in vitro biological characterization of nine pyrazoles derived from chalcones as potential anticancer agents for non-small cell lung cancer A-549, H226, and H460 cell lines.

View Article and Find Full Text PDF

Acridine cell-penetrating peptide conjugates are an extremely important family of compounds in antitumor chemotherapy. These conjugates are not so widely analysed in antimicrobial therapy, although bioactive peptides could be used as nanocarriers to smuggle antimicrobial compounds. An octaarginine conjugate of an imidazoacridinone derivative (Compound ) synthetized by us exhibited high antifungal activity against reference and fluconazole-resistant clinical strains (MICs ≤ 4 μg mL).

View Article and Find Full Text PDF

In this study, we report lubrication properties of physisorbed zwitterionic bottlebrush polymers in the presence of multivalent ions using the surface force apparatus. Unlike polyelectrolyte brushes, the lubrication properties of which diminish drastically in the presence of multivalent ions at concentrations as low as 0.1 mM, zwitterionic bottlebrush polymers exhibit friction coefficients as low as ∼10 at such concentrations of multivalent ions up to intermediate normal loads.

View Article and Find Full Text PDF

Carbazole skeleton plays a significant role as a structural scaffold of many pharmacologically active compounds. Pyrazine-functionalized carbazole derivative was constructed by coupling 2-amino-5-bromo-3-methylaminepyrazine (ABMAP) into 3 and 6 positions of the carbazole ring. Multi-experimental methods were used, e.

View Article and Find Full Text PDF