Publications by authors named "Anoop Kallingal"

Developing highly effective anticancer drugs remains a primary focus for drug designers worldwide. In this investigation, we designed and developed novel pyrazole-acrylonitriles incorporating various N-heterocyclic groups and evaluated their anticancer properties. Comprehensive in vitro profiling included evaluation of cell cytotoxicity, colony formation and cell adhesion in 3D cultures, cell cycle analysis, DNA damage induction, and apoptosis.

View Article and Find Full Text PDF

Novel fused pyran derivatives were synthesized and evaluated for anticancer activity against MCF7 (ATCC - HTB-22, breast), A549 (ATCC - CCL-185, lung), and HCT116 (ATCC - CCL-247, colorectal) cancer cell lines. Most compounds exhibited broad-spectrum activity. Among them, imidazole-containing derivatives 8a and 8b demonstrated potent anti-breast cancer activity with IC values of 8.

View Article and Find Full Text PDF

Herein, we report the synthesis of new compounds with demonstrated anticancer properties based on the 2,3,4,9-tetrahydro-1H-carbazole scaffold. The Fischer indolization method was used to close the heterocyclic motif. The synthesis method's scope and limitations were thoroughly assessed through a series of experiments.

View Article and Find Full Text PDF

This article presents an in-depth exploration of the roles of Telomere Repeat-binding Factors 1 and 2 (TRF1 and TRF2), and the shelterin complex, in the context of cancer biology. It emphasizes their emerging significance as potential biomarkers and targets for therapeutic intervention. Central to the shelterin complex, TRF1 and TRF2 are crucial in maintaining telomere integrity and genomic stability, their dysregulation often being a hallmark of cancerous cells.

View Article and Find Full Text PDF

As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells.

View Article and Find Full Text PDF

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research.

View Article and Find Full Text PDF

In this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder caused due to the damage and loss of neurons in specific brain regions. It is the most common form of dementia observed in older people. The symptoms start with memory loss and gradually cause the inability to speak and do day-to-day activities.

View Article and Find Full Text PDF

The mechanisms of antigen processing and presentation play a crucial role in the recognition and targeting of cancer cells by the immune system. Cancer cells can evade the immune system by downregulating or losing the expression of the proteins recognized by the immune cells as antigens, creating an immunosuppressive microenvironment, and altering their ability to process and present antigens. This review focuses on the mechanisms of cancer immune evasion with a specific emphasis on the role of antigen presentation machinery.

View Article and Find Full Text PDF

Bio-based polymers are a class of polymers made by living organisms, a few of them known and commercialized yet. Due to poor mechanical strength and economic constraints, they have not yet seen the extensive application. Instead, they have been an appropriate candidate for biological applications.

View Article and Find Full Text PDF

Alzheimer's disease (AD), also called senile dementia is a neurodegenerative disease seen commonly in the elderly and is characterised by the formation of β-amyloid plaques and neurofibrillary tangles (NFT). Though a complete understanding of the disease is lacking, recent studies showed the role of the enzyme acetylcholinesterase (AChE) in pathogenesis. Finding new lead compounds from natural sources has always been a quest for researchers.

View Article and Find Full Text PDF

Recently, the demand for fungal pigments has increased due to their several benefits over synthetic dyes. Many species of fungi are known to produce pigments and a large number of fungal strains for pigment production are yet to be extensively investigated. The natural pigment from sustainable natural sources has good economic and industrial value.

View Article and Find Full Text PDF

Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drastically changed the lifestyle of people around the globe. Due to the lack of specific and effective antiviral drugs, transmission of the disease increases exponentially and makes it more serious and harder to control. Drugs that were assumed to be effective against COVID-19 have failed in various stages of clinical trials and this made the scientific community more disappointed.

View Article and Find Full Text PDF