Neonatal jaundice is a physiological phenomenon that occurs in newborns. However, because excess bilirubin can cause cytotoxicity, abnormal hyperbilirubinemia can lead to bilirubin encephalopathy. In the evaluation of neonatal jaundice, serum bilirubin concentrations are indirectly assessed via a transcutaneous bilirubinometer.
View Article and Find Full Text PDFSex chromosomes are expected to coevolve with their respective sex, potentially disfavoring their co-occurrence as cosexuality evolves. This effect is expected to be stronger where sex chromosomes are restricted to one sex, such as in plants expressing sex in their haploid stage. We assess this hypothesis in liverworts with U/V sex chromosomes, ancestral dioicy, and several independent transitions to monoicy (cosexuality).
View Article and Find Full Text PDFSexual reproduction results in the development of haploid and diploid cell states during the life cycle. In bryophytes, the dominant multicellular haploid phase produces motile sperm that swim through water to the egg to effect fertilization from which a relatively small diploid phase develops. In angiosperms, the reduced multicellular haploid phase produces non-motile sperm that is delivered to the egg through a pollen tube to effect fertilization from which the dominant diploid phase develops.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Highly deformable batteries that are flexible and stretchable are important for the next-generation wearable devices. Several studies have focused on the stable operation and life span of batteries. On the other hand, there has been less focus on the packaging of highly deformable batteries.
View Article and Find Full Text PDFIn flowering plants, strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), an SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating its origin in the common ancestor of land plants.
View Article and Find Full Text PDFCurr Opin Plant Biol
February 2022
Strigolactones (SLs) play roles as a class of plant hormones and rhizosphere signaling chemicals that induce hyphal branching of arbuscular mycorrhizal fungi and seed germination of parasitic plants. Therefore, SLs have dual functions. Recent progress in genome sequencing and genetic studies of bryophytes and algae has begun to shed light on the origin and evolution of these two functions of SLs.
View Article and Find Full Text PDFMitochondrial DNA B Resour
November 2021
Plant Mol Biol
November 2021
Complete chloroplast genome sequence of a moss, Takakia lepidozioides (Takakiopsida) is reported. The largest collection of genes in mosses and the intensive RNA editing were discussed from evolutionary perspectives. We assembled the entire plastid genome sequence of Takakia lepidozioides (Takakiopsida), emerging from the first phylogenetic split among extant mosses.
View Article and Find Full Text PDFThe spiral arrangement (phyllotaxis) of leaves is a shared morphology in land plants, and exhibits diversity constrained to the Fibonacci sequence. Phyllotaxis in vascular plants is produced at a multicellular meristem, whereas bryophyte phyllotaxis emerges from a single apical stem cell (AC) that is embedded in a growing tip of the gametophyte. An AC is asymmetrically divided into itself and a single 'merophyte', producing a future leaf and a portion of the stem.
View Article and Find Full Text PDFBackground: Amphibians possess three kinds of dermal chromatophore: melanophores, iridophores, and xanthophores. Knockout Xenopus tropicalis that lack the pigmentation of melanophores and iridophores have been reported. The identification of the causal genes for xanthophore pigmentation or differentiation could lead to the creation of a see-through frog without three chromatophores.
View Article and Find Full Text PDFNeonatal jaundice occurs in >80% of newborns in the first week of life owing to physiological hyperbilirubinemia. Severe hyperbilirubinemia could cause brain damage owing to its neurotoxicity, a state commonly known as kernicterus. Therefore, periodic bilirubin monitoring is essential to identify infants at-risk and to initiate treatment including phototherapy.
View Article and Find Full Text PDFExtant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits.
View Article and Find Full Text PDFBryophytes and vascular plants represent the broadest evolutionary divergence in the land plant lineage, and comparative analyses of development spanning this divergence therefore offer opportunities to identify truisms of plant development in general. In vascular plants, organs are formed repetitively around meristems at the growing tips in response to positional cues. In contrast, leaf formation in mosses and leafy liverworts occurs from clonal groups of cells derived from a daughter cell of the apical stem cell known as merophytes, and cell lineage is a crucial factor in repetitive organ formation.
View Article and Find Full Text PDFHornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support.
View Article and Find Full Text PDFLand plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants.
View Article and Find Full Text PDFIn general, Glomeromycotina was thought to be the earliest fungi forming mycorrhiza-like structure (MLS) in land plant evolution. In contrast, because the earliest divergent lineage of extant land plants, i.e.
View Article and Find Full Text PDFIn angiosperms, the phase transition from vegetative to reproductive growth involves the de-repression of the squamosa promoter-binding-protein-like (SPL) class of transcription factors, which is negatively regulated by the specific microRNAs (miRNAs/miRs) miR156/529 [1]. Non-vascular land plants also undergo growth-phase transition to the reproductive state, but knowledge regarding the controlling mechanisms is limited. Here, we investigate the reproductive transition in the liverwort Marchantia polymorpha, focusing on the roles of miR529c [2-4] and MpSPL2.
View Article and Find Full Text PDFPlant life cycles alternate between haploid gametophytes and diploid sporophytes. While regulatory factors determining male and female sexual morphologies have been identified for sporophytic reproductive organs, such as stamens and pistils of angiosperms, those regulating sex-specific traits in the haploid gametophytes that produce male and female gametes and hence are central to plant sexual reproduction are poorly understood. Here, we identified a MYB-type transcription factor, MpFGMYB, as a key regulator of female sexual differentiation in the haploid-dominant dioicous liverwort, MpFGMYB is specifically expressed in females and its loss resulted in female-to-male sex conversion.
View Article and Find Full Text PDFEvolutionary mechanisms underlying innovation of cell types have remained largely unclear. In multicellular eukaryotes, the evolutionary molecular origin of sperm differentiation is unknown in most lineages. Here, we report that in algal ancestors of land plants, changes in the DNA-binding domain of the ancestor of the MYB transcription factor DUO1 enabled the recognition of a new cis-regulatory element.
View Article and Find Full Text PDFPlant Cell Physiol
February 2016
One of the classical research plants in plant biology, Marchantia polymorpha, is drawing attention as a new model system. Its ease of genetic transformation and a genome sequencing project have attracted attention to the species. Here I present a thorough assessment of the taxonomic status, anatomy and developmental morphology of each organ and tissue of the gametophyte and sporophyte on the basis of a thorough review of the literature and my own observations.
View Article and Find Full Text PDFPlant Cell Physiol
February 2016
The vast majority of land plants develop gas-exchange tissues with intercellular spaces (ICSs) connected directly to the air. Although the developmental processes of ICS have been described in detail at the morphological and ultrastructural level in diverse land plants, little is known about the molecular mechanism responsible for ICS formation. The liverwort Marchantia polymorpha develops a multilayered tissue with a large ICS (air chamber), whose formation is initiated at selected positions of epidermal cells.
View Article and Find Full Text PDFPyruvate serves as a metabolic precursor for many plastid-localized biosynthetic pathways, such as those for fatty acids, terpenoids and branched-chain amino acids. In spite of the importance of pyruvate uptake into plastids (organelles within cells of plants and algae), the molecular mechanisms of this uptake have not yet been explored. This is mainly because pyruvate is a relatively small compound that is able to passively permeate lipid bilayers, which precludes accurate measurement of pyruvate transport activity in reconstituted liposomes.
View Article and Find Full Text PDFIn meiosis of basal land plants, meiotic division planes are typically predicted by quadri-lobing of the cytoplasm and/or quadri-partitioning of plastids prior to nuclear divisions. However, sporocytes of several marchantialean liverworts display no indication of premeiotic establishment of quadripolarity, as is observed in flowering plants. In these cases, the shape of sporocytes remains spherical or elliptical and numerous plastids are distributed randomly in the cytoplasm during meiosis.
View Article and Find Full Text PDF