Background: Pain management is an important part of prehospital care. Pain assessment and recognition are inseparable in adequate pain treatment. However, relatively scarce literature is available from Nordic and European countries.
View Article and Find Full Text PDFBackground: Methods for estimating variance components (VC) using restricted maximum likelihood (REML) typically require elements from the inverse of the coefficient matrix of the mixed model equations (MME). As genomic information becomes more prevalent, the coefficient matrix of the MME becomes denser, presenting a challenge for analyzing large datasets. Thus, computational algorithms based on iterative solving and Monte Carlo approximation of the inverse of the coefficient matrix become appealing.
View Article and Find Full Text PDFThe standard single-step genomic prediction model assumes that all SNP markers explain an equal amount of genetic variance, which, however, may not be true. This is because SNPs are located in or near different genes with different functions. Therefore, it seems logical to consider SNP marker-specific weights when predicting genomic breeding values.
View Article and Find Full Text PDFBackground: In this study, computationally efficient methods to approximate the reliabilities of genomic estimated breeding values (GEBV) in a single-step genomic prediction model including a residual polygenic (RPG) effect are described. In order to calculate the reliabilities of the genotyped animals, a single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) or a genomic BLUP (GBLUP), was used, where two alternatives to account for the RPG effect were tested. In the direct approach, the genomic model included the RPG effect, while in the blended method, it did not but an index was used to weight the genomic and pedigree-based BLUP (PBLUP) reliabilities.
View Article and Find Full Text PDFThe calculation of exact reliabilities involving the inversion of mixed model equations poses a heavy computational challenge when the system of equations is large. This has prompted the development of different approximation methods. We give an overview of the various methods and computational approaches in calculating reliability from the era before the animal model to the era of single-step genomic models.
View Article and Find Full Text PDFIn high-yielding dairy cattle, severe postpartum negative energy balance is often associated with metabolic and infectious disorders that negatively affect production, fertility, and welfare. Mobilization of adipose tissue associated with negative energy balance is reflected through an increased level of nonesterified fatty acids (NEFA) in the blood plasma. Earlier, identification of negative energy balance through detection of increased blood plasma NEFA concentration required laborious and stressful blood sampling.
View Article and Find Full Text PDFGenetic evaluation of female fertility in Danish, Finnish, and Swedish dairy cows was updated in 2015 to multiple-trait animal model evaluation, where heifer and cow fertility up to third parity are considered as separate traits. A model for conception rate was also developed, which required variance component estimation for Nordic Holstein and Nordic Red Dairy Cattle. We used a multiple-trait multiple-lactation sire model to determine variance components for interval from calving to first insemination, length of service period, and conception rate.
View Article and Find Full Text PDFJ Dairy Sci
February 2015
Three random regression models were developed for routine genetic evaluation of Danish, Finnish, and Swedish dairy cattle. Data included over 169 million test-day records with milk, protein, and fat yield observations from over 8.7 million dairy cows of all breeds.
View Article and Find Full Text PDFEstimation of variance components by Monte Carlo (MC) expectation maximization (EM) restricted maximum likelihood (REML) is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be lost due to the need for a large number of iterations of the EM algorithm. To decrease the computing time we explored the use of faster converging Newton-type algorithms within MC REML implementations.
View Article and Find Full Text PDFGenet Sel Evol
September 2011
Background: Interbull is a non-profit organization that provides internationally comparable breeding values for globalized dairy cattle breeding programmes. Due to different trait definitions and models for genetic evaluation between countries, each biological trait is treated as a different trait in each of the participating countries. This yields a genetic covariance matrix of dimension equal to the number of countries which typically involves high genetic correlations between countries.
View Article and Find Full Text PDFBackground: The dairy cattle breeding industry is a highly globalized business, which needs internationally comparable and reliable breeding values of sires. The international Bull Evaluation Service, Interbull, was established in 1983 to respond to this need. Currently, Interbull performs multiple-trait across country evaluations (MACE) for several traits and breeds in dairy cattle and provides international breeding values to its member countries.
View Article and Find Full Text PDF