Publications by authors named "Matti Taskinen"

Background: In this study, computationally efficient methods to approximate the reliabilities of genomic estimated breeding values (GEBV) in a single-step genomic prediction model including a residual polygenic (RPG) effect are described. In order to calculate the reliabilities of the genotyped animals, a single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) or a genomic BLUP (GBLUP), was used, where two alternatives to account for the RPG effect were tested. In the direct approach, the genomic model included the RPG effect, while in the blended method, it did not but an index was used to weight the genomic and pedigree-based BLUP (PBLUP) reliabilities.

View Article and Find Full Text PDF

Approximate multistep methods to calculate reliabilities for estimated breeding values in large genetic evaluations were developed for single-trait (ST-RA) and multitrait (MT-RA) single-step genomic BLUP (ssGBLUP) models. First, a traditional animal model was used to estimate the amount of nongenomic information for the genotyped animals. Second, this information was used with genomic data in a genomic BLUP model (genomic BLUP/SNP-BLUP) to approximate the total amount of information and ssGBLUP reliabilities for the genotyped animals.

View Article and Find Full Text PDF

Background: Single-step genomic best linear unbiased prediction (BLUP) evaluation combines relationship information from pedigree and genomic marker data. The inclusion of the genomic information into mixed model equations requires the inverse of the combined relationship matrix [Formula: see text], which has a dense matrix block for genotyped animals.

Methods: To avoid inversion of dense matrices, single-step genomic BLUP can be transformed to single-step single nucleotide polymorphism BLUP (SNP-BLUP) which have observed and imputed marker coefficients.

View Article and Find Full Text PDF