Background: Cattle international genetic evaluations allow the comparison of estimated breeding values (EBV) across different environments, i.e. countries.
View Article and Find Full Text PDFMonte Carlo (MC) methods have been found useful in estimation of variance parameters for large data and complex models with many variance components (VC), with respect to both computer memory and computing time. A disadvantage has been a fluctuation in round-to-round values of estimates that makes the estimation of convergence challenging. Furthermore, with Newton-type algorithms, the approximate Hessian matrix might have sufficient accuracy, but the inaccuracy in the gradient vector exaggerates the round-to-round fluctuation to intolerable.
View Article and Find Full Text PDFJ Anim Breed Genet
October 2018
Joint Nordic (Denmark, Finland, Sweden) genetic evaluation of female fertility is currently based on the multiple trait multilactation animal model (BLUP). Here, single step genomic model (ssGBLUP) was applied for the Nordic Red dairy cattle fertility evaluation. The 11 traits comprised of nonreturn rate and days from first to last insemination in heifers and first three parities, and days from calving to first insemination in the first three parities.
View Article and Find Full Text PDFEstimation of variance components by Monte Carlo (MC) expectation maximization (EM) restricted maximum likelihood (REML) is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be lost due to the need for a large number of iterations of the EM algorithm. To decrease the computing time we explored the use of faster converging Newton-type algorithms within MC REML implementations.
View Article and Find Full Text PDF