The Rcs signal transduction system is a phosphorelay responsible for sensing enterobacterial cell envelope stresses. In Escherichia coli, the Rcs system is required to survive treatment with A22 and mecillinam, antibiotics that perturb cell size. To test whether size changes are correlated with envelope damage and thereby sensed by the Rcs system, we tuned E.
View Article and Find Full Text PDFNuclear pore complexes (NPCs) bridge across the nuclear envelope and mediate nucleocytoplasmic exchange. They consist of hundreds of nucleoporin building blocks and exemplify the structural complexity of macromolecular assemblies. To ensure transport directionality, different nucleoporin complexes are attached to the cytoplasmic and nuclear face of the NPC.
View Article and Find Full Text PDFBackground: The optimal choice of the type of hip arthroplasty for managing acute femoral neck fractures (FNF) remains controversial, particularly when deciding between total hip arthroplasty (THA) and hemiarthroplasty (HA). Dual mobility cups (DM) have demonstrated efficacy in preventing instability, which is a potential concern with conventional THA. This study aimed to compare the outcomes of HA, DM, and conventional THA for managing FNF using data from a nationwide cohort collected through the Swiss National Joint Registry (SIRIS).
View Article and Find Full Text PDFNuclear pore complexes (NPCs) mediate nucleocytoplasmic exchange, which is essential for eukaryotes. Mutations in the central scaffolding components of NPCs are associated with genetic diseases, but how they manifest only in specific tissues remains unclear. This is exemplified in Nup133-deficient mouse embryonic stem cells, which grow normally during pluripotency, but differentiate poorly into neurons.
View Article and Find Full Text PDFLong terminal repeat (LTR) retrotransposons belong to the transposable elements (TEs), autonomously replicating genetic elements that integrate into the host's genome. Among animals, Drosophila melanogaster serves as an important model organism for TE research and contains several LTR retrotransposons, including the Ty1-copia family, which is evolutionarily related to retroviruses and forms virus-like particles (VLPs). In this study, we use cryo-focused ion beam (FIB) milling and lift-out approaches to visualize copia VLPs in ovarian cells and intact egg chambers, resolving the in situ copia capsid structure to 7.
View Article and Find Full Text PDFUpon infection, human immunodeficiency virus type 1 (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T cells and macrophages. The capsid enters the nuclear pore complex (NPC), driven by interactions with numerous phenylalanine-glycine (FG)-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however.
View Article and Find Full Text PDFIntroduction: The RM Pressfit vitamys is an uncemented, titanium particle-coated, isoelastic monoblock cup made of vitamin E blended highly cross-linked polyethylene. We addressed the following questions: (1) What are the clinical and (2) radiographic outcomes 10 years after implantation? (3) What is the revision rate?
Methods: In this prospective observational study in a tertiary care centre we investigated all consecutive cases of total hip replacement with the RM Pressfit vitamys cup between September 2009 and November 2011. It was implanted in 162 hips, 49.
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.
View Article and Find Full Text PDFThe ring-shaped chaperonin T-complex protein ring complex (TRiC; also known as chaperonin containing TCP-1, CCT) is an ATP-driven protein-folding machine that is essential for maintenance of cellular homeostasis. Its dysfunction is related to cancer and neurodegenerative disease. Despite its importance, how TRiC works in the cell remains unclear.
View Article and Find Full Text PDFBackground And Purpose: Metaphyseal-stabilised short stems rely on sufficient metaphyseal fixation and are inserted by following the medial cortex. This type of stem is used extensively in our institution, and we observed on occasion unintended implant positioning with an increased distance between the implant and the medial cortex. A bony structure within the proximal femur which was first described in 1874 and named the calcar femorale, coincides with this phenomenon.
View Article and Find Full Text PDFRibosomes translate the genetic code into proteins. Recent technical advances have facilitated in situ structural analyses of ribosome functional states inside eukaryotic cells and the minimal bacterium Mycoplasma. However, such analyses of Gram-negative bacteria are lacking, despite their ribosomes being major antimicrobial drug targets.
View Article and Find Full Text PDFCryo-electron tomography (cryo-ET) is a powerful method to elucidate subcellular architecture and to structurally analyze biomolecules in situ by subtomogram averaging, yet data quality critically depends on specimen thickness. Cells that are too thick for transmission imaging can be thinned into lamellae by cryo-focused ion beam (cryo-FIB) milling. Despite being a crucial parameter directly affecting attainable resolution, optimal lamella thickness has not been systematically investigated nor the extent of structural damage caused by gallium ions used for FIB milling.
View Article and Find Full Text PDFTo celebrate the 50th anniversary of Cell Press and the Cell focus issue on structural biology, we discussed with scientists working across diverse fields how AlphaFold has changed their research and brought structural biology to the masses.
View Article and Find Full Text PDFDetermining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells.
View Article and Find Full Text PDFRNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies.
View Article and Find Full Text PDFMedicina (B Aires)
November 2023
The use of protoplasts in plant biology has become a convenient tool for the application of transient gene expression. This model system has allowed the study of plant responses to biotic and abiotic stresses, protein location and trafficking, cell wall dynamics, and single-cell transcriptomics, among others. Although well-established protocols for isolating protoplasts from different plant tissues are available, they have never been used for studying plant cells using cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET).
View Article and Find Full Text PDFRibosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, but their distribution in actively translating human cells remains elusive. We used a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with high resolution.
View Article and Find Full Text PDFThe 5S ribonucleoprotein (RNP) is assembled from its three components (5S rRNA, Rpl5/uL18 and Rpl11/uL5) before being incorporated into the pre-60S subunit. However, when ribosome synthesis is disturbed, a free 5S RNP can enter the MDM2-p53 pathway to regulate cell cycle and apoptotic signaling. Here we reconstitute and determine the cryo-electron microscopy structure of the conserved hexameric 5S RNP with fungal or human factors.
View Article and Find Full Text PDFThe approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol. The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs). Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs-about 50 MDa-is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence.
View Article and Find Full Text PDFCryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles, and cytosol.
View Article and Find Full Text PDFHow cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here, we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos.
View Article and Find Full Text PDFRibosomes translate genetic information into primary structure. During translation, various cofactors transiently bind to the ribosome that undergoes prominent conformational and structural changes. Different translational states of ribosomes have been well characterized in vitro.
View Article and Find Full Text PDF