Publications by authors named "Marie Mita"

In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their extensive applications in fields such as biomedicine, electronics, catalysis, and environmental science. However, traditional chemical methods for AuNPs synthesis present certain challenges, such as the use of harsh chemicals and high energy consumption. These limitations have led to the development of alternative, sustainable synthesis methods that are efficient, cost-effective, and environmentally friendly.

View Article and Find Full Text PDF

Biological phenomena are generated by the cooperative and hierarchical relationships between a variety of biomolecules, such as proteins, metabolites, signaling molecules, and ions. In many cases, however, these biomolecules do not have color, and it is difficult to observe them as they are. Therefore, it is necessary to "visualize" each molecule with color or fluorescence, and to analyze the functional relationships between them.

View Article and Find Full Text PDF

Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation.

View Article and Find Full Text PDF

Cyclic guanosine 3', 5'-monophosphate (cGMP) is a second messenger that regulates a variety of physiological processes. Here, we develop a red fluorescent protein-based cGMP indicator, "Red cGull". The fluorescence intensity of Red cGull increase more than sixfold in response to cGMP.

View Article and Find Full Text PDF

Glucose is the main source of energy for organisms, and it is important to understand the spatiotemporal dynamics of intracellular glucose. Single fluorescent protein-based glucose indicators, named "Red Glifons" have been developed that apply to live-cell and dual-color imaging. These indicators exhibited more than 3-fold increase in fluorescence intensity in the presence of 10 mM glucose.

View Article and Find Full Text PDF

Advances in live-cell imaging have been accelerated by the development of various fluorescent indicators. However, indicators that are suitable for multicolor imaging remain a challenge to develop. Herein, we have developed a single fluorescent protein (FP)-based indicator using a semirational molecular design and a molecular evolution approach.

View Article and Find Full Text PDF

Glycolysis is the metabolic pathway that converts glucose into pyruvate, whereas fermentation can then produce lactate from pyruvate. Here, we developed single fluorescent protein (FP)-based lactate and pyruvate indicators with low EC for trace detection of metabolic molecules and live cell imaging and named them "Green Lindoblum" and "Green Pegassos," respectively. Green Lindoblum (EC of 30 µM for lactate) and Green Pegassos (EC of 70 µM for pyruvate) produced a 5.

View Article and Find Full Text PDF

Glucose is the most important energy source for living animals. Here, we developed a series of single fluorescent protein (FP)-based glucose indicators, named as "Green Glifons", to understand the hierarchal and mutual relationships between molecules involved in energy metabolism. Three indicators showed a different EC for glucose (50, 600, and 4000 μM), producing a ∼7-fold change in fluorescence intensity in response to glucose.

View Article and Find Full Text PDF