Alzheimer's disease (AD), characterized by β-amyloid plaques, is increasingly recognized by lipid dysregulation as a key factor in its pathology. Mass spectrometry imaging (MSI), a powerful tool for mapping the spatial distribution of biomolecules in tissue sections, is ideally suited for investigating region-specific molecular alterations in diseased animal tissues. Recent MSI advancements have revealed plaque-associated molecular features in the AD brain, highlighting the role of metabolic dysfunction in disease progression.
View Article and Find Full Text PDFSpatial lipidomics is a powerful technique for understanding the complexity of the lipidome in biological systems through mass spectrometry imaging (MSI). Recent advancements have enabled isomer-selected MSI (iMSI) of lipids in biological samples using both online and off-line derivatization strategies. Despite these impressive developments, most iMSI techniques are limited to either positive or negative ion mode analysis, restricting the molecular coverage achievable in a single experiment.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
May 2025
Background: Alcoholic beverages and the main metabolite of alcohol, acetaldehyde, are known carcinogens. A genetic variant in aldehyde dehydrogenase 2 (ALDH2, G>A, rs671) leads to decreased efficiency in metabolizing acetaldehyde and is associated with an increased cancer risk. As alcohol consumption is a modifiable risk factor for various cancers, the identification of ALDH2 deficiency presents an opportunity for precision cancer prevention.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) using nanospray desorption electrospray ionization (nano-DESI) has been extensively used for label-free mapping of hundreds of molecules in biological samples with minimal sample pretreatment. While both nano-DESI probes made of two fused silica capillaries and glass microfluidic probes (MFP) have been developed for imaging biological tissues with high spatial resolution, MFPs significantly enhance the robustness and throughput of nano-DESI MSI experiments. Despite their advantages, the fabrication of glass microfluidic devices is costly and requires specialized equipment or cleanroom facilities.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) is a powerful technique for label-free spatial mapping of multiple classes of biomolecules in tissue sections. However, differences in desorption and ionization efficiency of different classes of molecules make it challenging to simultaneously map biomolecules at each omics layer in the same tissue sample. Herein, we present a correlative imaging method using nanospray desorption electrospray ionization (nano-DESI) MSI, which enables the spatial mapping of lipids, metabolites, peptides, and proteins with cellular-level spatial resolution in a single tissue section.
View Article and Find Full Text PDFPerspect Sex Reprod Health
September 2024
Context: Medicaid is a major funder of reproductive health services, including family planning and pregnancy-related care, especially for people with limited income and people of color. Federal Medicaid funds cannot be used for abortion however 16 states allow state Medicaid funds to pay for abortion. In recent years, Illinois and Maine implemented, and West Virginia discontinued, state Medicaid coverage of abortion.
View Article and Find Full Text PDFPurpose: The purpose of this study is to investigate the impact of negative urgency on implicit mobile phone addiction tendency among college freshmen, and to observe whether social exclusion situations affect the relationship between negative urgency and implicit mobile phone addiction tendency.
Methods: The UPPS-P Impulsive Behavior Scale was used to screen 575 freshmen from a certain university. The experiment utilized a GO/NO-GO paradigm.
Mass spectrometry imaging (MSI) is widely used for examining the spatial distributions of molecules in biological samples. Conventional MSI approaches, in which molecules extracted from the sample are distinguished based on their mass-to-charge ratio, cannot distinguish between isomeric species and some closely spaced isobars. To facilitate isobar separation, MSI is typically performed using high-resolution mass spectrometers.
View Article and Find Full Text PDFAmbient mass spectrometry imaging (MSI) is a powerful technique that allows for the simultaneous mapping of hundreds of molecules in biological samples under atmospheric conditions, requiring minimal sample preparation. We have developed nanospray desorption electrospray ionization (nano-DESI), a liquid extraction-based ambient ionization technique, which has proven to be sensitive and capable of achieving high spatial resolution. We have previously described an integrated microfluidic probe, which simplifies the nano-DESI setup, but is quite difficult to fabricate.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
August 2023
Untargeted separation of isomeric and isobaric species in mass spectrometry imaging (MSI) is challenging. The combination of ion mobility spectrometry (IMS) with MSI has emerged as an effective strategy for differentiating isomeric and isobaric species, which substantially enhances the molecular coverage and specificity of MSI experiments. In this study, we have implemented nanospray desorption electrospray ionization (nano-DESI) MSI on a trapped ion mobility spectrometry (TIMS) mass spectrometer.
View Article and Find Full Text PDFIn the past two decades, the power of mass spectrometry imaging (MSI) for the label free spatial mapping of molecules in biological systems has been substantially enhanced by the development of approaches for imaging with high spatial resolution. With the increase in the spatial resolution, the experimental throughput has become a limiting factor for imaging of large samples with high spatial resolution and 3D imaging of tissues. Several experimental and computational approaches have been recently developed to enhance the throughput of MSI.
View Article and Find Full Text PDFThe skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 μm) and mosaic-like distribution across the tissue tnecessitates the use of high-resolution imaging to differentiate between fiber types. Herein, we use a multimodal approach to characterize the chemical composition of skeletal fibers in a limb muscle, the gastrocnemius.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) is a powerful tool for label-free mapping of the spatial distribution of proteins in biological tissues. We have previously demonstrated imaging of individual proteoforms in biological tissues using nanospray desorption electrospray ionization (nano-DESI), an ambient liquid extraction-based MSI technique. Nano-DESI MSI generates multiply charged protein ions, which is advantageous for their identification using top-down proteomics analysis.
View Article and Find Full Text PDFACS Meas Sci Au
October 2022
Mass spectrometry imaging (MSI) enables label-free mapping of hundreds of molecules in biological samples with high sensitivity and unprecedented specificity. Conventional MSI experiments are relatively slow, limiting their utility for applications requiring rapid data acquisition, such as intraoperative tissue analysis or 3D imaging. Recent advances in MSI technology focus on improving the spatial resolution and molecular coverage, further increasing the acquisition time.
View Article and Find Full Text PDFUnraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform-specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) for the proteoform-selective imaging of biological tissues. Nano-DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue.
View Article and Find Full Text PDFBackground: People with arthritis, a leading cause of disability, may be prescribed long-term opioid therapy to manage chronic pain. Regular use of opioids can increase risk of overdose and opioid use disorder (OUD).
Objective: The purpose of our research was to validate an instrument to screen for harmful opioid use in people with disability and chronic pain due to arthritis (PWDA).
Simultaneous spatial localization and structural characterization of molecules in complex biological samples currently represents an analytical challenge for mass spectrometry imaging (MSI) techniques. In this study, we describe a novel experimental platform, which substantially expands the capabilities and enhances the depth of chemical information obtained in high spatial resolution MSI experiments performed using nanospray desorption electrospray ionization (nano-DESI). Specifically, we designed and constructed a portable nano-DESI MSI platform and coupled it with a drift tube ion mobility (IM) spectrometer-mass spectrometer.
View Article and Find Full Text PDF