Background: Obesity is a burgeoning global health problem with an escalating prevalence and severe implications for public health. New evidence indicates that long non-coding RNAs (lncRNAs) may play a pivotal role in regulating adipose tissue function and energy homeostasis across various species. However, the molecular mechanisms underlying obesity remain elusive.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2023
The physiological mechanisms underpinning adaptations to starvation and cold stresses have been extensively studied in Drosophila, yet the understanding of correlated changes in stress-related and life-history traits, as well as the energetics of stress tolerance, still remains elusive. To answer the questions empirically in this context, we allowed D. melanogaster to evolve for either increased starvation or cold tolerance (24-generations / regime) in an experimental evolution system, and examined whether selection of either trait affects un-selected stress trait, as well as the impacts potential changes in life-history and mating success-related traits.
View Article and Find Full Text PDFThe pyruvate kinase M2 isoform (PKM2) is linked with cancer. Therefore, it is of interest to document the molecular docking analysis of Pyruvate Kinase M2 (PDB ID: 4G1N) with potential activators from the ZINC database. Thus, we document the optimal molecular docking features of a compound having ID ZINC000034285235 with PKM2 for further consideration.
View Article and Find Full Text PDFEnvironmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome.
View Article and Find Full Text PDFRIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals.
View Article and Find Full Text PDF