The electrochemical nitrogen reduction reaction (NRR) offers a sustainable route to ammonia production under ambient conditions but remains limited by inert N ≡ N bond activation and competitive hydrogen evolution reaction (HER). Herein, we employ first-principles density functional theory (DFT) to systematically investigate the NRR activity of graphyne (GY) doped with single-atom transition metals (Fe, Mo, Ru, W). Structural analysis reveals strong binding and minimal distortion of the TM dopants on the porous, π-conjugated GY scaffold, with Fe-GY and W-GY exhibiting the highest stability.
View Article and Find Full Text PDFIn this article, we present the design of novel nanotubes exhibiting quantum confinement and edge effects derived from graphene quantum dots. Density functional theory (DFT) and molecular dynamics simulations were utilized to explore their structural, electronic, and energy storage properties. These finite graphene nanotubes demonstrate both structural and thermal stability, as confirmed by frequency and molecular dynamics (MD) simulations at elevated temperatures (400 K).
View Article and Find Full Text PDFTwo-dimensional topological insulators with propagating topological edge states are promising for dissipationless transport, while their one-dimensional analogs are capable of hosting localized topological junction states that are mainly envisaged for quantum computing and spintronics. Here, in contrast, we propose to use the localized nature of topological junction states for sensing applications. We report a systematic topological classification of a wide class of graphene nanoribbons represented by already synthesized extended chevron species.
View Article and Find Full Text PDFDetecting residual chlorine as a hypochlorite ion (ClO) in drinking water is crucial for ensuring disinfection effectiveness and safety. In the present study, we report two novel Quinolium Benzothiazole-Based Cyanine (3ethylbenzothiazol-2(3 H)-ylidene)methyl)-1-(4-iodobutyl)quinolin-1-ium tetrafluoroborate (IBTQ) and 1-(3-(4-(dimethylamino)pyridin-1-ium-1-yl)propyl)-4-((3-methylbenzothiazol-2(3 H)-ylidene)methyl)quinolin-1-ium diiodide (DMP-BTQ) hypochlorite (ClO) sensors using UV- visible, colorimetric, and quartz crystal microbalance (QCM) techniques. The two sensors generate distinct absorption spectra, frequency shifts, and color changes that are visible to the naked eye.
View Article and Find Full Text PDFMXenes quantum dots (QDs), including NbC, NbCO, and NbCF, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of NbC with O and F atoms enhances stability, with binding energies (BEs) of 7.
View Article and Find Full Text PDFThis study investigates the structural intricacies and properties of single-walled nanotubes (SWNT) and double-walled nanotubes (DWNT) composed of hexagonal boron nitride (BN) and carbon (C). Doping with various atoms including light elements (B, N, O) and heavy metals (Fe, Co, Cu) is taken into account. The optimized configurations of SWNT and DWNT, along with dopant positions, are explored, with a focus on DWNT-BN-C.
View Article and Find Full Text PDFThis study focuses on the design of new 2D membranes from connected Clar's Goblet as a potential sensor for pharmaceutical pollutants, specifically the painkiller drugs aspirin, paracetamol, ibuprofen, and diclofenac. The electronic, optical, and interaction properties are investigated using density functional theory calculations. The Clar's Goblet membranes (CGMs) that were chosen are semiconductors with an energy gap of around 1.
View Article and Find Full Text PDFWe employed density functional theory calculations to investigate the electronic and optical characteristics of finite GaAs nanoribbons (NRs). Our study encompasses chemical alterations including doping, functionalization, and complete passivation, aimed at tailoring NR properties. The structural stability of these NRs was affirmed by detecting real vibrational frequencies in infrared spectra, indicating dynamical stability.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2023
In this study, we investigated the reactivity of γ-graphyne (Gp) and its derivatives, Gp-CH, Gp-COOH, Gp-CN, Gp-NO, and Gp-SOH, for the removal of toxic heavy metal ions (Hg, Pb, and Cd) from wastewater. From the analysis of the optimized structures, it was observed that all the compounds exhibited planar geometry. The dihedral angles (C9-C2-C1-C6 and C9-C2-C1-C6) were approximately 180.
View Article and Find Full Text PDFPure water is a key element for a sustainable and healthy environment of human inhabitation. Since major sources of water contamination are industrially generated heavy metal cations there is great demand for efficient methods of their treatment. Here, using density functional theory, we investigate the covalent organic framework's electronic and optical properties and their interaction with the most dangerous heavy metal pollutants, namely Hg, Pb and Cd.
View Article and Find Full Text PDFColloidal metallic nanoparticles have attracted a lot of interest in the last two decades owing to their simple synthesis and fascinating optical properties. In this manuscript, a study of the effect of both gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs) on the fluorescence emission (FE) of TPPS has been investigated utilizing steady-state fluorescence spectroscopy and UV-Vis spectrophotometry. From the observed electronic absorption spectra, there is no evidence of the ground state interaction between metallic Au NPs or Ag NPs with TPPS.
View Article and Find Full Text PDFIn this manuscript, we report four series for 1,2,4-triazine derivatives as dye-sensitized solar cells (DSSCs). Density functional theory (DFT) methods via utilizing Becke's three-parameter functional and LeeeYangeParr functional (B3LYP) level with 6-31G (d, p) basis set to investigate their modeling molecular structures. Optimized molecular structures for studied molecular structures are obtained using the DFT/B3LYP/6-31G (d, p) method.
View Article and Find Full Text PDFDue to numerous pharmaceutical and biological activities hydrazone (TC) based materials, it was important to investigate quantum chemical studies such as Density functional theory (DFT) calculations, natural bond orbital (NBO) analysis, molecular electrostatic potential (MESP), and local reactivity usage Fukui function for six TC derivatives compounds. DFT, NBO, MESP, and local reactivity calculations were obtained via utilizing CAM-Becke's three-parameter functional and Leee Yange Parr (CAM-B3LYP) functional and 6-311G + + (2d, 2p) basis set. Optimized molecular structures for all studied compounds were obtained usage the DFT/CAM-B3LYP/6-311G + + (2d, 2p) method.
View Article and Find Full Text PDFThis manuscript includes some photophysical parameters and some optical properties such as absorption and emission spectra of the (E, E)-2,5-bis (3,4-dimethoxystyryl) pyrazine (BDP) by applying sol-gel and copolymer matrices. The BDP molecular structure is incorporated in sol-gel matrix and copolymer of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). In case of sol-gel matrix, the BDP molecular structure has higher quantum yield in addition to photostability maxima.
View Article and Find Full Text PDFThis article reports the optical properties such as absorption profile, molar absorptivity, fluorescence profile and photo-physical parameters such as dipole moment, oscillator strength, fluorescence quantum yields, fluorescence lifetimes, laser performance and finally photostability of 2,5-Bis(5-tert-butyl-benzoxazol-2-yl)thiophene (BBOT),1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOB), 5-diphenyel-oxazole (PPO) laser dyes in different restricted hosts. (BBOT), (POPOB) and (PPO) are embedded in transparent silica-based nanoporous sol-gel glass and copolymer matrix of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). The absorption and fluorescence properties of these laser dyes in sol-gel glass matrices are compared with their respective properties in copolymer host.
View Article and Find Full Text PDF