Publications by authors named "Mahesh A Vibhute"

Gene expression is a fundamental aspect in the construction of a minimal synthetic cell, and the use of chromosomes will be crucial for the integration and regulation of complex modules. Expression from chromosomes in vitro transcription and translation (IVTT) systems presents limitations, as their large size and low concentration make them far less suitable for standard IVTT reactions. Here, we addressed these challenges by optimizing lysate-based IVTT systems at low template concentrations.

View Article and Find Full Text PDF

The formation of cytomimetic protocells that capture the physicochemical aspects of living cells is an important goal in bottom-up synthetic biology. Here, we recreated the crowded cytoplasm in liposome-based protocells and studied the kinetics of cell-free gene expression in these crowded containers. We found that diffusion of key components is affected not only by macromolecular crowding but also by enzymatic activity in the protocell.

View Article and Find Full Text PDF

Biochemical processes inside the cell take place in a complex environment that is highly crowded, heterogeneous, and replete with interfaces. The recently recognized importance of biomolecular condensates in cellular organization has added new elements of complexity to our understanding of chemistry in the cell. Many of these condensates are formed by liquid-liquid phase separation (LLPS) and behave like liquid droplets.

View Article and Find Full Text PDF

The compartmentalization of cell-free gene expression systems in liposomes provides an attractive route to the formation of protocells, but these models do not capture the physical (crowded) environment found in living systems. Here, we present a microfluidics-based route to produce monodisperse liposomes that can shrink almost 3 orders of magnitude without compromising their stability. We demonstrate that our strategy is compatible with cell-free gene expression and show increased protein production rates in crowded liposome protocells.

View Article and Find Full Text PDF