Publications by authors named "Madison C B Paton"

Mesenchymal stromal cells (MSCs) have been under clinical investigation for the treatment of cerebral palsy (CP) for over a decade. However, the field has been limited by study heterogeneity and variable reports of efficacy. We conducted a scoping review of published and registered reports of MSC treatment for CP, with meta-analysis of Gross Motor Function Measure (GMFM) outcomes to summarize research and provide future recommendations.

View Article and Find Full Text PDF

Context: Umbilical cord blood (UCB) is a novel treatment for cerebral palsy (CP), with trials indicating UCB can improve gross motor function. However, heterogeneity has limited the ability to interpret findings.

Objective: Assess the safety and efficacy of UCB for improving gross motor function in children with CP, including exploring cell dose effect and responder subgroups.

View Article and Find Full Text PDF

Cell therapies as treatments for neonatal conditions have attracted significant research and parent interest over the last two decades. Mesenchymal stromal cells, umbilical cord blood cells and neural stem cells translate from lab, to preclinical and into clinical trials, with contributions being made from all over the world. Effective and timely translation involves frequent reflection and consultation from research-adjacent fields (i.

View Article and Find Full Text PDF

Stem cell therapy holds promise for multiple sclerosis (MS), with efficacy of different stem cell types reported across a range of preclinical MS animal models. While stem cell therapy has been approved for a small number of diseases in humans, extracellular vesicles (EVs) may provide an efficacious, cost-effective, and safer alternative to stem cell therapy. To this end, we conducted a systematic review with meta-analysis to assess the effectiveness of stem cell-derived secretome (EV and conditioned media (CM)) in animal models of MS.

View Article and Find Full Text PDF

(1) Background: Neonatal brain injury can lead to permanent neurodevelopmental impairments. Notably, suppressing inflammatory pathways may reduce damage. To determine the role of neuroinflammation in the progression of neonatal brain injury, we investigated the effect of treating neonatal rat pups with the immunosuppressant tacrolimus at two time points: before and after hypoxic-ischaemic (HI)-induced injury.

View Article and Find Full Text PDF

Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022).

View Article and Find Full Text PDF

Perinatal brain injury is a major contributor to long-term adverse neurodevelopment. There is mounting preclinical evidence for use of umbilical cord blood (UCB)-derived cell therapy as potential treatment. To systematically review and analyse effects of UCB-derived cell therapy on brain outcomes in preclinical models of perinatal brain injury.

View Article and Find Full Text PDF

Introduction: We have previously described preclinical literature which supports umbilical cord blood-derived cell (UCBC) therapy as an efficacious treatment for perinatal brain injury. However, efficacy of UCBCs may be influenced by different patient population and intervention characteristics.

Objectives: To systematically review the effects of UCBCs on brain outcomes in animal models of perinatal brain injury across subgroups to better understand the contribution of model type (preterm versus term), brain injury type, UCB cell type, route of administration, timing of intervention, cell dosage, and number of doses.

View Article and Find Full Text PDF

Background: Neural stem cells (NSCs) have the potential to engraft and replace damaged brain tissue, repairing the damaged neonatal brain that causes cerebral palsy (CP). There are procedures that could increase engraftment of NSCs and may be critical for efficacy, but hold notable risks. Before clinical trials progress, it is important to engage with the CP community to understand their opinions.

View Article and Find Full Text PDF

Context: Discovering new interventions to improve neurodevelopmental outcomes is a priority; however, clinical trials are challenging and methodological issues may impact the interpretation of intervention efficacy.

Objectives: Characterize the proportion of infant neurodevelopment trials reporting a null finding and identify features that may contribute to a null result.

Data Sources: The Cochrane library, Medline, Embase, and CINAHL databases.

View Article and Find Full Text PDF

Research has established inflammation in the pathogenesis of brain injury and the risk of developing cerebral palsy (CP). However, it is unclear if inflammation is solely pathogenic and primarily contributes to the acute phase of injury, or if inflammation persists with consequence in CP and may therefore be considered a comorbidity. We conducted a scoping review to identify studies that analyzed inflammatory biomarkers in CP and discuss the role of inflammation in the pathogenesis of CP and/or as a comorbidity.

View Article and Find Full Text PDF

Cell therapies are an emergent treatment for cerebral palsy (CP) with promising evidence demonstrating efficacy for improving gross motor function. However, families value improvements in a range of domains following intervention and the non-motor symptoms, comorbidities and complications of CP can potentially be targeted by cell therapies. We conducted a scoping review to describe all outcomes that have been reported in cell therapy studies for CP to date, and to examine what instruments were used to capture these.

View Article and Find Full Text PDF

Evidence-based practice is the foundation of rehabilitation for maximizing client outcomes. However, an unacceptably high number of ineffective or outdated interventions are still implemented, leading to sub-optimal outcomes for clients. This paper proposes the Rehabilitation Evidence bAsed Decision-Making (READ) Model, a decision-making algorithm for evidence-based decision-making in rehabilitation settings.

View Article and Find Full Text PDF

Background And Objective: Bobath therapy, or neurodevelopmental therapy (NDT) is widely practiced despite evidence other interventions are more effective in cerebral palsy (CP). The objective is to determine the efficacy of NDT in children and infants with CP or high risk of CP.

Methods: Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, Embase, and Medline were searched through March 2021.

View Article and Find Full Text PDF

Perinatal brain injury can lead to significant neurological and cognitive deficits and currently no therapies can regenerate the damaged brain. Neural stem cells (NSCs) have the potential to engraft and regenerate damaged brain tissue. The aim of this systematic review was to evaluate the preclinical literature to determine whether NSC administration is more effective than controls in decreasing perinatal brain injury.

View Article and Find Full Text PDF

Background Aims: Umbilical cord blood (UCB) infusion is being investigated as a treatment for a range of neurological conditions, primarily because of its potent immunomodulatory effects mediated via paracrine signaling. Although initial research mainly utilized autologous UCB, allogeneic samples from a sibling or unrelated donor have now become more common. With the use of allogeneic UCB, questions have arisen surrounding the necessity for human leukocyte antigen (HLA) matching, preparative regimens and immunosuppressant drugs.

View Article and Find Full Text PDF

To progress stem cell therapies for cerebral palsy, clinicians need to openly engage with patients about emerging evidence and be willing to refer to relevant clinical trials, if and when appropriate. To assess whether education can change clinicians' confidence in information sharing and willingness to refer to relevant clinical trials, an online questionnaire was distributed at a scientific conference before and after a professional workshop on cell therapies for cerebral palsy. Of the 42 participants who completed the survey, 26 self-identified as clinicians.

View Article and Find Full Text PDF

Background: The majority of children with cerebral palsy develop spasticity, which interferes with motor development, function, and participation. This systematic review appraised current evidence regarding assessments and interventions for spasticity in children aged less than two years with or at high risk for cerebral palsy and integrated findings with parent preferences.

Methods: Five databases (CINAHL, EMBASE, OVID/Medline, SCOPUS, and PsycINFO) were searched.

View Article and Find Full Text PDF

Cerebral palsy (CP) is a permanent motor disorder that results from brain injury and neuroinflammation during the perinatal period. Mesenchymal stromal cells (MSCs) have been explored as a therapy in multiple adult neuroinflammatory conditions. Our study examined the therapeutic benefits of intranasal delivery of human umbilical cord tissue (UC) derived-MSCs in a rat model of neonatal hypoxic-ischemic (HI) brain injury.

View Article and Find Full Text PDF

Hypoxic ischemic (HI) insult in term babies at labor or birth can cause long-term neurodevelopmental disorders, including cerebral palsy (CP). The current standard treatment for term infants with hypoxic ischemic encephalopathy (HIE) is hypothermia. Because hypothermia is only partially effective, novel therapies are required to improve outcomes further.

View Article and Find Full Text PDF

Background: Chorioamnionitis and fetal inflammation are principal causes of neuropathology detected after birth, particularly in very preterm infants. Preclinical studies show that umbilical cord blood (UCB) cells are neuroprotective, but it is uncertain if allogeneic UCB cells are a feasible early intervention for preterm infants. In contrast, mesenchymal stem cells (MSCs) are more readily accessible and show strong anti-inflammatory benefits.

View Article and Find Full Text PDF

Background: Infants born preterm following exposure to in utero inflammation/chorioamnionitis are at high risk of brain injury and life-long neurological deficits. In this study, we assessed the efficacy of early intervention umbilical cord blood (UCB) cell therapy in a large animal model of preterm brain inflammation and injury. We hypothesised that UCB treatment would be neuroprotective for the preterm brain following subclinical fetal inflammation.

View Article and Find Full Text PDF

Background: It is well understood that hypoxic-ischemic (HI) brain injury during the highly vulnerable perinatal period can lead to cerebral palsy, the most prevalent cause of chronic disability in children. Recently, human clinical trials have reported safety and some efficacy following treatment of cerebral palsy using umbilical cord blood (UCB) cells. UCB is made up of many different cell types, including endothelial progenitor cells (EPCs), T regulatory cells (Tregs), and monocyte-derived suppressor cells (MDSCs).

View Article and Find Full Text PDF