Publications by authors named "Luis O Morales"

Photosynthesis in plants is negatively affected by high light intensity and UV radiation. The photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES (CRYs) mediate perception and acclimation of plants to UV-B/UV-A2 (290-340 nm) and UV-A1/blue light (350-500 nm), respectively. However, their roles in photoprotection of photosynthesis across different wavebands of the spectrum remain unclear.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is an important molecule that regulates antioxidant responses that are crucial for plant stress resistance. Exposure to low levels of ultraviolet-B radiation (UV-B, 280-315 nm) can also activate antioxidant defenses and acclimation responses. However, how HO and UV-B interact to promote stress acclimation remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • High doses of ozone (O) and nitrogen dioxide (NO) can damage plants and lead to cell death, prompting research into their molecular responses and genetic control.
  • Transcriptome analysis showed that while O and NO trigger similar gene expression related to pathogen resistance and cell death, plants can differentiate between the two gases and activate unique signaling pathways.
  • A genome-wide association study (GWAS) revealed that plant sensitivity to O and NO is controlled by independent genetic factors, identifying key regulators that could aid in understanding programmed cell death caused by these pollutants.
View Article and Find Full Text PDF

Ultraviolet radiation (UV, 280-400 nm) as an environmental signal triggers metabolic acclimatory responses. However, how different light qualities affect UV acclimation during growth is poorly understood. Here, cucumber plants (Cucumis sativus) were grown under blue, green, red, or white light in combination with UV.

View Article and Find Full Text PDF

During recent years, we have advanced our understanding of plant molecular responses to ultraviolet radiation (UV, 280-400 nm); however, how plants respond to UV radiation under different spectral light qualities is poorly understood. In this study, cucumber plants (Cucumis sativus "Lausanna RZ F1") were grown under monochromatic blue, green, red, and broadband white light in combination with UV radiation. The effects of light quality and UV radiation on acclimatory responses were assessed by measuring transcript accumulation of ELONGATED HYPOCOTYL 5 (HY5), CHALCONE SYNTHASE 2 (CHS2), and LIGHT HARVESTING COMPLEX II (LHCII), and the accumulation of flavonoids and hydroxycinnamic acids in the leaves.

View Article and Find Full Text PDF

Acclimation of plants to water deficit involves biochemical and physiological adjustments. Here, we studied how ultraviolet (UV)-B exposure and exogenously applied hydrogen peroxide (H O ) potentiates drought tolerance in tobacco (Nicotiana tabacum L. cv.

View Article and Find Full Text PDF

About 95% of the ultraviolet (UV) photons reaching the Earth's surface are UV-A (315-400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280-315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR).

View Article and Find Full Text PDF

Tropospheric ozone (O3) is a major air pollutant that decreases yield of important crops worldwide. Despite long-lasting research of its negative effects on plants, there are many gaps in our knowledge on how plants respond to O3. In this study, we used natural variation in the model plant Arabidopsis (Arabidopsis thaliana) to characterize molecular and physiological mechanisms underlying O3 sensitivity.

View Article and Find Full Text PDF

Ultraviolet B (UV-B) (280-315 nm) and ultraviolet A (UV-A) (315-400 nm) radiation comprise small portions of the solar radiation but regulate many aspects of plant development, physiology and metabolism. Until now, how plants respond to UV-B in the presence of different light qualities is poorly understood. This study aimed to assess the effects of a low UV-B dose (0.

View Article and Find Full Text PDF

The photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) play major roles in the perception of UV-B (280-315 nm) and UV-A/blue radiation (315-500 nm), respectively. However, it is poorly understood how they function in sunlight. The roles of UVR8 and CRYs were assessed in a factorial experiment with Arabidopsis thaliana wild-type and photoreceptor mutants exposed to sunlight for 6 or 12 hr under five types of filters with cut-offs in UV and blue-light regions.

View Article and Find Full Text PDF

UV-B exposure of plants regulates expression of numerous genes concerned with various responses. Sudden exposure of non-acclimated plants to high fluence rate, short wavelength UV-B induces expression via stress-related signaling pathways that are not specific to the UV-B stimulus, whereas low fluence rates of UV-B can regulate expression via the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, there is little information about whether non-stressful, low fluence rate UV-B treatments can activate gene expression independently of UVR8.

View Article and Find Full Text PDF

Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315-500 nm) and UV-B (280-315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator.

View Article and Find Full Text PDF

Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses.

View Article and Find Full Text PDF

Blue light and UV radiation shape a plant's morphology and development, but accession-dependent responses under natural conditions are unclear. Here we tested the hypothesis that two faba bean (Vicia faba L.) accessions adapted to different latitudes and altitudes vary in their responses to solar blue and UV light.

View Article and Find Full Text PDF

We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)-A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light-emitting-diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split-plot design with or without UV-A radiation.

View Article and Find Full Text PDF

Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology.

View Article and Find Full Text PDF

Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation.

View Article and Find Full Text PDF

Wavelengths in the ultraviolet (UV) region of the solar spectrum, UV-B (280-315 nm) and UV-A (315-400 nm), are key environmental signals modifying several aspects of plant physiology. Despite significant advances in the understanding of plant responses to UV-B and the identification of signalling components involved, there is limited information on the molecular mechanisms that control UV-B signalling in plants under natural sunlight. Here, we aimed to corroborate the previous suggested role for RADICAL-INDUCED CELL DEATH1 (RCD1) in UV-B signalling under full spectrum sunlight.

View Article and Find Full Text PDF

The amount of residual lignin and hemicelluloses in softwood fibers was systematically varied by SO2-ethanol-water fractionation for integrated biorefinery with nanomaterial and biofuel production. On the basis of their low energy demand in mechanical processing, the fibers were deconstructed to lignocellulose nanofibrils (LCNF) and used as substrate for bioconversion. The effect of LCNF composition on saccharification via multicomponent enzymes was investigated at different loadings.

View Article and Find Full Text PDF

Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280-315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315-400 nm) and UV-B irradiances were attenuated using plastic films.

View Article and Find Full Text PDF

The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation is an important environmental factor for plant communities; however, plant responses to solar UV are not fully understood. Here, we report differential effects of solar UV-A and UV-B radiation on the expression of flavonoid pathway genes and phenolic accumulation in leaves of Betula pendula Roth (silver birch) seedlings grown outdoors. Plants were exposed for 30 days to six UV treatments created using three types of plastic film.

View Article and Find Full Text PDF