Publications by authors named "Luigino A Giancotti"

Chemotherapy-induced peripheral neuropathy accompanied by neuropathic pain (CIPN) is a major neurotoxicity of cisplatin, a platinum-based drug widely used for lung, ovarian, and testicular cancer treatment. Chemotherapy-induced peripheral neuropathy accompanied by neuropathic pain causes drug discontinuation and severely affects life quality with no FDA-approved interventions. We previously reported that platinum-based drugs increase levels of sphingosine 1-phosphate (S1P) in the spinal cord and drive CIPN through activating the S1P receptor subtype 1 (S1PR1).

View Article and Find Full Text PDF

Activation of sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) in the spinal cord contributes to neuropathic pain; however, its role at supraspinal sites remains unexplored. Ozanimod is a new FDA-approved S1PR1 antagonist for multiple sclerosis. Here, we show that systemic ozanimod administration reverses behavioral hypersensitivities in male rodents induced by chronic sciatic nerve constriction and chemotherapy (oxaliplatin and paclitaxel).

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy accompanied by neuropathic pain (CIPN) is a major neurotoxicity of cisplatin, a platinum-based drug widely used for lung, ovarian, and testicular cancer treatment. CIPN causes drug discontinuation and severely impacts life quality with no FDA-approved interventions. We previously reported that platinum-based drugs increase levels of sphingosine 1-phosphate (S1P) in the spinal cord and drive CIPN through activating the S1P receptor subtype 1 (S1PR1).

View Article and Find Full Text PDF

Neuropathic pain is a debilitating chronic condition that remains difficult to treat. More efficacious and safer therapeutics are needed. A potential target for therapeutic intervention recently identified by our group is the G-protein coupled receptor 160 (GPR160) and the cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand for GPR160.

View Article and Find Full Text PDF

Morphine is an important pain reliever employed in pain management, its extended utilize is hindered by the onset of analgesic tolerance and oxidative stress. Long-term morphine administration causes elevated production of reactive oxygen species (ROS), disrupting mitochondrial function and inducing oxidation. Sirtuin 3 (SIRT3), a mitochondrial protein, is essential in modulating ROS levels by regulating mitochondrial antioxidant enzymes as manganese superoxide dismutase (MnSOD).

View Article and Find Full Text PDF

Neuropathic pain is a pressing unmet medical need requiring novel nonopioid-based therapeutic approaches. Using unbiased transcriptomic analysis, we found that the expression of , a G protein-coupled receptor, increased in the dorsal horn of the spinal cord in rats with traumatic nerve injury-induced neuropathic pain. Daily intrathecal injections of si reversed behavioral hypersensitivities in a time-dependent manner.

View Article and Find Full Text PDF

Neuropathic pain is a devastating condition where current therapeutics offer little to no pain relief. Novel nonnarcotic therapeutic targets are needed to address this growing medical problem. Our work identified the G-protein-coupled receptor 160 (GPR160) as a potential target for therapeutic intervention.

View Article and Find Full Text PDF

P2Y receptor (P2YR) is activated by extracellular UDP-glucose, a damage-associated molecular pattern that promotes inflammation in the kidney, lung, fat tissue, and elsewhere. Thus, selective P2YR antagonists are potentially useful for inflammatory and metabolic diseases. The piperidine ring size of potent, competitive P2YR antagonist (4-phenyl-2-naphthoic acid derivative) PPTN was varied from 4- to 8-membered rings, with bridging/functional substitution.

View Article and Find Full Text PDF

Emerging evidence implicates the G-protein coupled receptor (GPCR) GPR183 in the development of neuropathic pain. Further investigation of the signaling pathways downstream of GPR183 is needed to support the development of GPR183 antagonists as analgesics. In rodents, intrathecal injection of its ligand, 7,25-dihydroxycholesterol (7,25-OHC), causes time-dependent development of mechano-and cold- allodynia (behavioral hypersensitivity).

View Article and Find Full Text PDF

Emerging evidence implicates the sphingosine-1-phosphate receptor subtype 1 (S1PR1) in the development of neuropathic pain. Continued investigation of the signaling pathways downstream of S1PR1 are needed to support development of S1PR1 antagonists. In rodents, intrathecal (i.

View Article and Find Full Text PDF

Paclitaxel is a chemotherapeutic drug used for cancer treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a common major dose-limiting side effect of many chemotherapeutic agents, including paclitaxel. CIPN is accompanied by mechanical and thermal hypersensitivity that resolves within weeks, months, or years after drug termination.

View Article and Find Full Text PDF

The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown.

View Article and Find Full Text PDF

In clinical practice, inflammatory pain is an important, unresolved health problem, despite the utilization of non-steroidal anti-inflammatory drugs (NSAIDs). In the last decade, different studies have proven that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in the development and maintenance of inflammatory pain and hyperalgesia via the post-translation modification of key proteins, such as manganese superoxide dismutase (MnSOD). It is well-known that inducible cyclooxygenase 2 (COX-2) plays a crucial role at the beginning of the inflammatory response by converting arachidonic acid into proinflammatory prostaglandin PGE and then producing other proinflammatory chemokines and cytokines.

View Article and Find Full Text PDF

Neuropathic pain is a chronic painful disease. Data have shown that reactive oxygen species (ROS) are implicated in chronic pain. Particularly, the enhanced ROS production alters the mitochondrial genome and proteome through the accumulation of lipid peroxidation products, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA).

View Article and Find Full Text PDF

Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7,25-dihydroxycholesterol (7,25-OHC).

View Article and Find Full Text PDF

Eight P2YR antagonists, including three newly synthesized analogues, containing a naphthalene or phenyl-triazolyl scaffold were compared in a mouse model of chronic neuropathic pain (sciatic constriction). P2YR antagonists rapidly (≤30 min) reversed mechano-allodynia, with maximal effects typically within 1 h after injection. Two analogues (4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid and -acetyl analogue , 10 μmol/kg, i.

View Article and Find Full Text PDF

Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD-dependent deacetylase sirtuin (SIRT3).

View Article and Find Full Text PDF

Extracellular nucleosides and nucleotides have widespread functions in responding to physiological stress. The "purinome" encompasses 4 G-protein-coupled receptors (GPCRs) for adenosine, 8 GPCRs activated by nucleotides, 7 adenosine 5'-triphosphate-gated P2X ion channels, as well as the associated enzymes and transporters that regulate native agonist levels. Purinergic signaling modulators, such as receptor agonists and antagonists, have potential for treating chronic pain.

View Article and Find Full Text PDF

Treating neuropathic pain is challenging and novel non-opioid-based medicines are needed. Using unbiased receptomics, transcriptomic analyses, immunofluorescence, and in situ hybridization, we found that the expression of the orphan GPCR Gpr160 and GPR160 increased in the rodent dorsal horn of the spinal cord following traumatic nerve injury. Genetic and immunopharmacological approaches demonstrated that GPR160 inhibition in the spinal cord prevented and reversed neuropathic pain in male and female rodents without altering normal pain response.

View Article and Find Full Text PDF

Neuropathic pain afflicts millions of individuals and represents a major health problem for which there is limited effective and safe therapy. Emerging literature links altered sphingolipid metabolism to nociceptive processing. However, the neuropharmacology of sphingolipid signaling in the central nervous system in the context of chronic pain remains largely unexplored and controversial.

View Article and Find Full Text PDF

The development of chemotherapy-induced painful peripheral neuropathy is a major dose-limiting side effect of many chemotherapeutics, including bortezomib, but the mechanisms remain poorly understood. We now report that bortezomib causes the dysregulation of de novo sphingolipid metabolism in the spinal cord dorsal horn to increase the levels of sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) ligands, S1P and dihydro-S1P. Accordingly, genetic and pharmacological disruption of S1PR1 with multiple S1PR1 antagonists, including FTY720, blocked and reversed neuropathic pain.

View Article and Find Full Text PDF

Background: The incidence of post-surgical chronic pain ranges between 20% and 40% in Europe. Osteoarthritis pain after prosthesis implantation is one of the most severe secondary syndromes, depending not only on surgery but also on organic changes before and after joints replacement. No data are available about risk factors.

View Article and Find Full Text PDF

Considerable evidence demonstrated that the central role of reactive oxygen species and reactive nitrogen species (ROS and RNS) in the development of thermal hyperalgesia is associated to acute and chronic inflammation. Idebenone (IDE), a synthetic analogue of the endogenous cellular antioxidant coenzyme Q10 (CoQ10), is an active drug in the central nervous system which shows a protection in a variety of neurological disorders. Since it is lipophilic, poorly water soluble and highly bound to plasma proteins, different technological approaches have been explored to increase its solubility and new pharmaceutical properties.

View Article and Find Full Text PDF

Citrus Bergamia Risso, commonly known as Bergamot, is a fruit whose Essential Oil and Bergamot Polyphenolic Fraction have numerous medicinal properties. It is also an excellent antioxidant and in this study, for the first time, its potential effect on morphine induced tolerance in mice has been investigated. Our studies revealed that development of antinociceptive tolerance to repeated doses of morphine in mice is consistently associated with increased formation of superoxide, malondialdehyde and tyrosine-nitrated proteins in the dorsal horn of the spinal cord such as the enzyme glutamine synthase.

View Article and Find Full Text PDF