Publications by authors named "Kathryn Braden"

The dorsal raphe nucleus is a critical node for affective and motivated circuits in the brain. Though typically known as a serotonergic hub, the dorsal raphe nucleus is also highly enriched in a variety of neuropeptides. Recent advances in biotechnology and behavioral modeling have led to a resurgence in neuropeptide research, allowing investigators to target unique peptide systems with unprecedented clarity.

View Article and Find Full Text PDF

Emerging evidence implicates the G-protein coupled receptor (GPCR) GPR183 in the development of neuropathic pain. Further investigation of the signaling pathways downstream of GPR183 is needed to support the development of GPR183 antagonists as analgesics. In rodents, intrathecal injection of its ligand, 7,25-dihydroxycholesterol (7,25-OHC), causes time-dependent development of mechano-and cold- allodynia (behavioral hypersensitivity).

View Article and Find Full Text PDF

Treatment with anti-neoplastic agents can lead to the development of chemotherapy induced peripheral neuropathy (CIPN), which is long lasting and often refractory to treatment. This neuropathic pain develops along dermatomes innervated by peripheral nerves with cell bodies located in the dorsal root ganglia (DRG). The voltage-gated sodium channel NaV1.

View Article and Find Full Text PDF

Chronic neuropathic pain is currently a major health issue in U.S. complicated by the lack of non-opioid analgesic alternatives.

View Article and Find Full Text PDF

Opioid therapies for chronic pain are undermined by many adverse side effects that reduce their efficacy and lead to dependence, abuse, reduced quality of life, and even death. We have recently reported that sphingosine-1-phosphate (S1P) 1 receptor (S1PR1) antagonists block the development of morphine-induced hyperalgesia and analgesic tolerance. However, the impact of S1PR1 antagonists on other undesirable side effects of opioids, such as opioid-induced dependence, remains unknown.

View Article and Find Full Text PDF

Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7,25-dihydroxycholesterol (7,25-OHC).

View Article and Find Full Text PDF

Chemotherapy-induced neuropathic pain (CINP) in both sexes compromises many current chemotherapeutics and lacks an FDA-approved therapy. We recently identified the sphingosine-1-phosphate receptor subtype 1 (S1PR1) and A3 adenosine receptor subtype (A3AR) as novel targets for therapeutic intervention. Our work in male rodents using paclitaxel, oxaliplatin, and bortezomib showed robust inhibition of CINP with either S1PR1 antagonists or A3AR agonists.

View Article and Find Full Text PDF

The development of chemotherapy-induced painful peripheral neuropathy is a major dose-limiting side effect of many chemotherapeutics, including bortezomib, but the mechanisms remain poorly understood. We now report that bortezomib causes the dysregulation of de novo sphingolipid metabolism in the spinal cord dorsal horn to increase the levels of sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) ligands, S1P and dihydro-S1P. Accordingly, genetic and pharmacological disruption of S1PR1 with multiple S1PR1 antagonists, including FTY720, blocked and reversed neuropathic pain.

View Article and Find Full Text PDF