Publications by authors named "Luca Dede'"

We introduce an innovative lumped-parameter model of the aortic valve, designed to efficiently simulate the impact of valve dynamics on blood flow. Our reduced model includes the elastic effects associated with the leaflets' curvature and the stress exchanged with the blood flow. The introduction of a lumped-parameter model based on momentum balance entails an easier calibration of the model parameters: Phenomenological-based models, on the other hand, typically have numerous parameters.

View Article and Find Full Text PDF

A key component in developing atrial digital twins (ADT) - virtual representations of patients' atria - is the accurate prescription of myocardial fibers which are essential for the tissue characterization. Due to the difficulty of reconstructing atrial fibers from medical imaging, a widely used strategy for fiber generation in ADT relies on mathematical models. Existing methodologies utilize semi-automatic approaches, are tailored to specific morphologies, and lack rigorous validation against imaging fiber data.

View Article and Find Full Text PDF

A key component in developing atrial digital twins (ADT) - virtual representations of patients' atria - is the accurate prescription of myocardial fibers which are essential for the tissue characterization. Due to the difficulty of reconstructing atrial fibers from medical imaging, a widely used strategy for fiber generation in ADT relies on mathematical models. Existing methodologies utilze semi-automatic approaches, are tailored to specific morphologies, and lack rigorous validation against imaging fiber data.

View Article and Find Full Text PDF

Objectives: Haemodynamic determinants of the ratio between pulmonary and systemic flow (Qp/Qs) in partial anomalous pulmonary venous return (PAPVR) are still not fully understood. Indeed, among patients with the same number of lung segments draining anomalously, a great variability is observed in terms of right ventricular overload. The aim of this study was to test the hypothesis that the anatomic site of drainage, affecting the total circuit impedance, independently influences the magnitude of shunt estimated by Qp/Qs.

View Article and Find Full Text PDF

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations.

View Article and Find Full Text PDF

Cardiac digital twins provide a physics and physiology informed framework to deliver personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs. Artificial Intelligence-based methods can make the creation of fast and accurate whole-heart digital twins feasible.

View Article and Find Full Text PDF

Impaired cardiac function has been described as a frequent complication of COVID-19-related pneumonia. To investigate possible underlying mechanisms, we represented the cardiovascular system by means of a lumped-parameter 0D mathematical model. The model was calibrated using clinical data, recorded in 58 patients hospitalized for COVID-19-related pneumonia, to make it patient-specific and to compute model outputs of clinical interest related to the cardiocirculatory system.

View Article and Find Full Text PDF

Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equations, thus demanding extensive computational resources. In contrast, data-driven approaches leverage deep learning algorithms to describe system evolution in low-dimensional spaces.

View Article and Find Full Text PDF

Background And Objective: Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data with physical knowledge of the processes underlying the heart function. These models have been increasingly employed in clinical practice to understand pathological mechanisms and their progression, design medical devices, support clinicians in improving therapies. Hinging upon a long-year experience in cardiovascular modeling, we have recently constructed a computational multi-physics and multi-scale integrated model of the heart for the investigation of its physiological function, the analysis of pathological conditions, and to support clinicians in both diagnosis and treatment planning.

View Article and Find Full Text PDF

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHADS-VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations.

View Article and Find Full Text PDF

Background: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community.

View Article and Find Full Text PDF

The aim of this paper is to introduce a new mathematical model that simulates myocardial blood perfusion that accounts for multiscale and multiphysics features. Our model incorporates cardiac electrophysiology, active and passive mechanics, hemodynamics, valve modeling, and a multicompartment Darcy model of perfusion. We consider a fully coupled electromechanical model of the left heart that provides input for a fully coupled Navier-Stokes-Darcy Model for myocardial perfusion.

View Article and Find Full Text PDF

Mechano-electric regulations (MER) play an important role in the maintenance of cardiac performance. Mechano-calcium and mechano-electric feedback (MCF and MEF) pathways adjust the cardiomyocyte contractile force according to mechanical perturbations and affects electro-mechanical coupling. MER integrates all these regulations in one unit resulting in a complex phenomenon.

View Article and Find Full Text PDF

A major challenge in the computational fluid dynamics modeling of the heart function is the simulation of isovolumetric phases when the hemodynamics problem is driven by a prescribed boundary displacement. During such phases, both atrioventricular and semilunar valves are closed: consequently, the ventricular pressure may not be uniquely defined, and spurious oscillations may arise in numerical simulations. These oscillations can strongly affect valve dynamics models driven by the blood flow, making unlikely to recovering physiological dynamics.

View Article and Find Full Text PDF

In the context of SARS-CoV-2 pandemic, mathematical modelling has played a fundamental role for making forecasts, simulating scenarios and evaluating the impact of preventive political, social and pharmaceutical measures. Optimal control theory represents a useful mathematical tool to plan the vaccination campaign aimed at eradicating the pandemic as fast as possible. The aim of this work is to explore the optimal prioritisation order for planning vaccination campaigns able to achieve specific goals, as the reduction of the amount of infected, deceased and hospitalized in a given time frame, among age classes.

View Article and Find Full Text PDF

3D bioprinting is a novel promising solution for living tissue fabrication, with several potential advantages in many different applicative sectors. However, the implementation of complex vascular networks remains as one of the limiting factors for the production of complex tissues and for bioprinting scale-up. In this work, a physics-based computational model is presented to describe nutrients diffusion and consumption phenomena in bioprinted constructs.

View Article and Find Full Text PDF

Background: Modeling the whole cardiac function involves the solution of several complex multi-physics and multi-scale models that are highly computationally demanding, which call for simpler yet accurate, high-performance computational tools. Despite the efforts made by several research groups, no software for whole-heart fully-coupled cardiac simulations in the scientific community has reached full maturity yet.

Results: In this work we present [Formula: see text]-fiber, an innovative tool for the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, which are the essential building blocks for modeling the electrophysiological, mechanical and electromechanical cardiac function, from single-chamber to whole-heart simulations.

View Article and Find Full Text PDF

Background And Objectives: Parameter estimation and uncertainty quantification are crucial in computational cardiology, as they enable the construction of digital twins that faithfully replicate the behavior of physical patients. Many model parameters regarding cardiac electromechanics and cardiovascular hemodynamics need to be robustly fitted by starting from a few, possibly non-invasive, noisy observations. Moreover, short execution times and a small amount of computational resources are required for the effective clinical translation.

View Article and Find Full Text PDF

We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model.

View Article and Find Full Text PDF

In this work we study the blood dynamics in the pulmonary arteries by means of a 3D-0D geometric multiscale approach, where a detailed 3D model for the pulmonary arteries is coupled with a lumped parameters (0D) model of the cardiovascular system. We propose to investigate three strategies for the numerical solution of the 3D-0D coupled problem: the Splitting-Explicit and Implicit algorithms, where information are exchanged between 3D and 0D models at each time step at the interfaces, and the One-Way algorithm, where the 0D is solved first off-line. In our numerical experiments performed in a realistic patient-specific 3D domain with a physiologically calibrated 0D model, we discuss first the issue on instabilities that may arise when not suitable connections are considered between 3D and 0D models; second we compare the performance and accuracy of the three proposed numerical strategies.

View Article and Find Full Text PDF

We analyse the haemodynamics of the left atrium, highlighting differences between healthy individuals and patients affected by atrial fibrillation. The computational study is based on patient-specific geometries of the left atria to simulate blood flow dynamics. We design a novel procedure to compute the boundary data for the 3D haemodynamic simulations, which are particularly useful in absence of data from clinical measurements.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the progression of electrophysiological phenomena in a cohort of patients with paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PsAF).

Background: Electrical remodeling has been conjectured to determine atrial fibrillation (AF) progression.

Methods: High-density electroanatomic maps during sinus rhythm of 20 patients with AF (10 PAF, 10 PsAF) were compared with 5 healthy control subjects (subjects undergoing ablation of a left-sided accessory pathway).

View Article and Find Full Text PDF

Several epidemiological models have been proposed to study the evolution of COVID-19 pandemic. In this paper, we propose an extension of the SUIHTER model, to analyse the COVID-19 spreading in Italy, which accounts for the vaccination campaign and the presence of new variants when they become dominant. In particular, the specific features of the variants (e.

View Article and Find Full Text PDF
Article Synopsis
  • The paper investigates mechano-electric feedbacks (MEFs) in the heart, focusing on how mechanical stimuli influence electrical signals, particularly during ventricular tachycardia (VT).
  • It utilizes a detailed 3D model of the left ventricle, accounting for changes in myocardial structure due to scarring and infarction, to simulate the effects of MEFs.
  • The results show that while changes in myocardial deformation can influence the cycle length and conduction velocity during VT, they do not impact the stability of VT, whereas nonselective stretch-activated channels (SACs) can potentially destabilize a previously stable VT.
View Article and Find Full Text PDF

Cardiac in silico numerical simulations are based on mathematical models describing the physical processes involved in the heart function. In this review paper, we critically survey biophysically-detailed mathematical models describing the subcellular mechanisms behind the generation of active force, that is the process by which the chemical energy of ATP (adenosine triphosphate) is transformed into mechanical work, thus making the muscle tissue contract. While presenting these models, that feature different levels of biophysical detail, we analyze the trade-off between the accuracy in the description of the subcellular mechanisms and the number of parameters that need to be estimated from experiments.

View Article and Find Full Text PDF