Publications by authors named "Syed Yusuf Ali"

Pulmonary vein isolation (PVI), the standard-of-care for atrial fibrillation (AF), is effective even in some persistent AF (PsAF) patients despite atrial fibrosis proliferation, suggesting that PVI could not only be isolating triggers but diminishing arrhythmogenic substrates. Left atrial (LA) posterior wall isolation is the prevalent adjunctive strategy aiming to address PsAF arrhythmogenesis, however, its outcomes vary widely. To explore why current PsAF ablation treatments have limited success and under what circumstances each treatment is most effective, we utilized patient-specific heart digital twins of PsAF patients incorporating fibrosis distributions to virtually implement versions of PVI (individual ostial to wide antral) and posterior wall isolation.

View Article and Find Full Text PDF

A key component in developing atrial digital twins (ADT) - virtual representations of patients' atria - is the accurate prescription of myocardial fibers which are essential for the tissue characterization. Due to the difficulty of reconstructing atrial fibers from medical imaging, a widely used strategy for fiber generation in ADT relies on mathematical models. Existing methodologies utilize semi-automatic approaches, are tailored to specific morphologies, and lack rigorous validation against imaging fiber data.

View Article and Find Full Text PDF

A key component in developing atrial digital twins (ADT) - virtual representations of patients' atria - is the accurate prescription of myocardial fibers which are essential for the tissue characterization. Due to the difficulty of reconstructing atrial fibers from medical imaging, a widely used strategy for fiber generation in ADT relies on mathematical models. Existing methodologies utilze semi-automatic approaches, are tailored to specific morphologies, and lack rigorous validation against imaging fiber data.

View Article and Find Full Text PDF

Background: In atrial fibrillation (AF) management, understanding left atrial (LA) substrate is crucial. While both electroanatomic mapping (EAM) and late gadolinium enhancement magnetic resonance imaging (LGE-MRI) are accepted methods for assessing the atrial substrate and are associated with ablation outcome, recent findings have highlighted discrepancies between low-voltage areas (LVAs) in EAM and LGE areas.

Objective: The purpose of this study was to explore the relationship between LGE regions and unipolar and bipolar LVAs using multipolar high-density mapping.

View Article and Find Full Text PDF

Background: Although targeting atrial fibrillation (AF) drivers and substrates has been used as an effective adjunctive ablation strategy for patients with persistent AF (PsAF), it can result in iatrogenic scar-related atrial tachycardia (iAT) requiring additional ablation. Personalized atrial digital twins (DTs) have been used preprocedurally to devise ablation targeting that eliminate the fibrotic substrate arrhythmogenic propensity and could potentially be used to predict and prevent postablation iAT.

Objectives: In this study, the authors sought to explore possible alternative configurations of ablation lesions that could prevent iAT occurrence with the use of biatrial DTs of prospectively enrolled PsAF patients.

View Article and Find Full Text PDF

Atrial fibrillation (AF), the most common heart rhythm disorder, may cause stroke and heart failure. For patients with persistent AF with fibrosis proliferation, the standard AF treatment-pulmonary vein isolation-has poor outcomes, necessitating redo procedures, owing to insufficient understanding of what constitutes good targets in fibrotic substrates. Here we present a prospective clinical and personalized digital twin study that characterizes the arrhythmogenic properties of persistent AF substrates and uncovers locations possessing rotor-attracting capabilities.

View Article and Find Full Text PDF

Ventricular arrhythmias, particularly ventricular tachycardia, are ubiquitously linked to 300,000 deaths annually. However, the current interventional procedure-the cardiac ablation-predict only short-term responses to treatment as the heart constantly remodels itself post-arrhythmia. To assist in the design of computational methods which focuses on long-term arrhythmia prediction, this review postulates three interdependent prospectives.

View Article and Find Full Text PDF