In this tutorial, we present TrAGICo (Trends Analysis Guided Interfaces Collection), a Python collection of functions for the extraction and analysis of experimental parameters from 1D and pseudo-2D NMR spectra acquired on Bruker instruments. We demonstrate the application of TrAGICo through practical examples, highlighting its utility for various NMR applications, such as extraction of the chemical shift temperature dependence, relaxation studies, and reaction monitoring.
View Article and Find Full Text PDFUltra-high magnetic fields and high-sensitivity cryoprobes permit the achievement of a high S/N ratio in C detection experiments, thus making a C superWEFT (Super water eliminated Fourier transform) experiment feasible. C signals that are not visible using H observed heteronuclear experiments, nor with established 2D C direct detection experiments, become easily observable when a C relaxation-based filter is used. Within this frame, optimal control pulses (OC pulses) have been, for the first time, applied to paramagnetic systems.
View Article and Find Full Text PDFIn this paper, we investigate the electronic structure of the [FeS] cluster of human ferredoxin 2 by designing NMR experiments tailored to observe hyperfine-shifted and fast relaxing resonances in the immediate proximity of the cluster and adding a quantitative layer of interpretation through quantum chemical calculations. The combination of paramagnetic NMR and density functional theory data provides evidence of the way unpaired electron density map is at the origin of the inequivalence of the two iron(III) ferredoxin centers. An electron spin density transfer is observed between cluster inorganic sulfide ions and aliphatic carbon atoms, occurring via a C-H---S-Fe interaction, suggesting that inorganic cluster sulfide ions have a significant role in the distribution of electron spin density around the prosthetic group.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
October 2024
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis.
View Article and Find Full Text PDFThe NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.
View Article and Find Full Text PDFThe robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed C/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation.
View Article and Find Full Text PDF