Shewanella are bacteria widespread in marine and brackish water environments and emergent opportunistic pathogens. Their environmental versatility depends on the ability to produce numerous iron-rich proteins, mainly multiheme c-type cytochromes. Although iron plays a vital role in the versatility of Shewanella species, very few studies exist regarding the strategies by which these bacteria scavenge iron from the environment.
View Article and Find Full Text PDFThe robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed C/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
February 2024
is an opportunistic pathogen that can establish chronic infections and form biofilm in wounds. Because the wound environment is largely devoid of oxygen, may rely on anaerobic metabolism, such as nitrate respiration, to survive in wounds. While nitrate reductase (Nar) typically reduces nitrate to nitrite, it can also reduce chlorate to chlorite, which is a toxic oxidizing agent.
View Article and Find Full Text PDFis an alphaproteobacterium with impressive metabolic versatility, capable of oxidizing ferrous iron to fix carbon dioxide using light energy. Photoferrotrophic iron oxidation is one of the most ancient metabolisms, sustained by the operon coding for three proteins: PioB and PioA, which form an outer-membrane porin-cytochrome complex that oxidizes iron outside of the cell and transfers the electrons to the periplasmic high potential iron-sulfur protein (HIPIP) PioC, which delivers them to the light-harvesting reaction center (LH-RC). Previous studies have shown that PioA deletion is the most detrimental for iron oxidation, while, the deletion of PioC resulted in only a partial loss.
View Article and Find Full Text PDFJ Inorg Biochem
September 2022
Metalloproteins represent a substantial fraction of the proteome where they have an outsized contribution to enzymology. This stems from the reactivity of transition metals found in the active sites of numerous classes of enzymes that undergo redox and/or spin-state transitions. Notwithstanding, NMR structures of metalloproteins deposited in the PDB are under-represented and NMR studies exploring paramagnetic states are a minute fraction of the overall database content.
View Article and Find Full Text PDFMetalloproteins play key roles across biology, and knowledge of their structure is essential to understand their physiological role. For those metalloproteins containing paramagnetic states, the enhanced relaxation caused by the unpaired electrons often makes signal detection unfeasible near the metal center, precluding adequate structural characterization right where it is more biochemically relevant. Here, we report a protein structure determination by NMR where two different sets of restraints, one containing Nuclear Overhauser Enhancements (NOEs) and another containing Paramagnetic Relaxation Enhancements (PREs), are used separately and eventually together.
View Article and Find Full Text PDFThe enhancement of nuclear relaxation rates due to the interaction with a paramagnetic center (known as Paramagnetic Relaxation Enhancement) is a powerful source of structural and dynamics information, widely used in structural biology. However, many signals affected by the hyperfine interaction relax faster than the evolution periods of common NMR experiments and therefore they are broadened beyond detection. This gives rise to a so-called blind sphere around the paramagnetic center, which is a major limitation in the use of PREs.
View Article and Find Full Text PDFHigh potential iron-sulfur proteins (HiPIPs) are a class of small proteins (50-100 aa residues), containing a 4Fe-4S iron-sulfur cluster. The 4Fe-4S cluster shuttles between the oxidation states [FeS], with a positive redox potential in the range (500-50 mV) throughout the different known HiPIPs. Both oxidation states are paramagnetic at room temperature.
View Article and Find Full Text PDFSiderophores make iron accessible under iron-limited conditions and play a crucial role in the survival of microorganisms. Because of their remarkable metal-scavenging properties and ease in crossing cellular envelopes, siderophores hold great potential in biotechnological applications, raising the need for a deeper knowledge of the molecular mechanisms underpinning the siderophore pathway. Here, we report the structural and functional characterization of a siderophore-interacting protein from the marine bacterium NCIBM400 (SfSIP).
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
September 2016
Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.
View Article and Find Full Text PDF