Cryptococcosis is a severe fungal infection, particularly in immunosuppressed individuals, causing over 112,000 HIV-related deaths annually. Early and accurate diagnosis is critical, but current methods often lack the necessary sensitivity, specificity, and accessibility for point-of-care use. A major challenge is identifying highly specific bioreceptors for detecting -specific antibodies.
View Article and Find Full Text PDFACS Appl Electron Mater
May 2025
Inkjet printing offers an attractive manufacturing method for flexible and large-area electronics, yet formulating sustainable inks not derived from fossil fuels represents a major challenge toward environmentally friendly technologies. Here, we present a conductive ink formulated for inkjet printing, consisting only of renewable and nontoxic components, namely electrically conductive activated carbon nanoparticles, ethyl cellulose as binder and stabilizer, and ethanol-terpineol mixture as the dispersant. The ink is composed of activated carbon nanoparticles with a diameter between 30 and 120 nm and exhibits high colloidal stability, dynamic viscosity and surface tension within an ideal range for inkjet printing.
View Article and Find Full Text PDFTimely and precise detection of bacterial infections is essential for improving patient outcomes and reducing healthcare costs, especially for sepsis, where delayed diagnosis increases mortality. Traditional culture- and PCR-based methods are time consuming and require complex sample processing, making them unsuitable for rapid diagnostics in resource-limited settings. CRISPR/Cas-based methods, particularly when combined with electrochemical sensing, offer a promising alternative for rapid point-of-care (POC) diagnostics of bacterial infections due to their simplicity and specificity.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
May 2025
Electrochemical biosensors have emerged as pivotal tools in point-of-care (POC) sensing, offering rapid, sensitive, and cost-effective detection platforms. Different strategies for advancing electrochemical POC biosensors have been explored recently, including fabrication methodologies and advances in biorecognition elements. This review comprehensively explores the miniaturization and integration of portable and wireless devices into fully integrated systems, highlighting recent advancements and challenges in fabrication techniques.
View Article and Find Full Text PDFMicroneedles are mainly used for pain-free drug administration and in biosensing for wearable systems. They are also promising for fields such as agronomy for precision farming, but their fabrication is not straightforward, often requiring expensive equipment and cleanroom protocols, being unsuitable for mass production. Here, we report a new and simple method for the scalable fabrication of all-inkjet-printed conductive microneedles based on silver nanoparticles (extensible to any other metallic nanoparticle ink) and a simple example of their application for monitoring the electrochemical properties of plants.
View Article and Find Full Text PDFPhloroglucinol (PL) or 1,3,5-trihydroxybenzene is a phenolic compound used therapeutically for its antispasmodic properties. However, an overdose or prolonged exposure to PL can have harmful effects on human health. This work describes for the first time the development of a photoelectrochemical (PEC) sensor to determine PL.
View Article and Find Full Text PDFThe combination of CRISPR technology and electrochemical sensors has sparked a paradigm shift in the landscape of point-of-care (POC) diagnostics. This review explores the dynamic convergence between CRISPR and electrochemical sensing, elucidating their roles in rapid and precise biosensing platforms. CRISPR, renowned for its remarkable precision in genome editing and programmability capability, has found a novel application in conjunction with electrochemical sensors, promising highly sensitive and specific detection of nucleic acids and biomarkers associated with diverse diseases.
View Article and Find Full Text PDFNanostructured microelectrodes (NMEs) are an attractive alternative to yield sensitive bioassays in unprocessed samples. However, although valuable for different applications, nanoporous NMEs usually cannot boost the sensitivity of diffusion-limited analyses because of the enlarged Debye length within the nanopores, which reduces their accessibility. To circumvent this limitation, nanopore-free gold NMEs were electrodeposited from 45 μm SU-8 apertures, featuring nanoridged microspikes on a recessed surface of gold thin film while carrying interconnected crown-like and spiky structures along the edge of a SU-8 passivation layer.
View Article and Find Full Text PDFMultiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.
View Article and Find Full Text PDFPencil drawing is one of the simplest and most cost-effective ways of fabricating miniaturized electrodes on a paper substrate. However, it is limited by the lack of reproducibility regarding the electrode drawing process. A 3D-printed pencil holder (3DPH) is proposed here for simple, reproducible, and low-cost hand-drawn fabrication of paper-based electrochemical devices.
View Article and Find Full Text PDFHerein we have proposed that a redox mechanism can produce surface charges and negative zeta potential on an aqueous graphite dispersion. Graphite was kept in contact with a concentrated ammonia aqueous solution, washed, and exfoliated in water, resulting in a dispersion with lyophobic nature. Ammonia treatment did not provide functional groups or nitrogen doping to graphite.
View Article and Find Full Text PDFCardiovascular diseases are considered one of the leading causes of premature mortality of patients worldwide. Therefore, rapid diagnosis of these diseases is crucial to ensure the patient's survival. During a heart attack or severe muscle damage, myoglobin is rapidly released in the body to constitute itself as a precise biomarker of acute myocardial infarction.
View Article and Find Full Text PDFBiosens Bioelectron X
September 2022
This work aims to develop a photoelectrochemical (PEC) platform for detection of SARS-CoV-2 spike glyprotein S1. The PEC platform is based on the modification of a fluorine-doped tin oxide (FTO) coated glass slide with strontium titanate (SrTiO or ST), sulfur-doped carbon nitride (g-CN-S or CNS) and palladium nanoparticles entrapped in aluminum hydroxide matrix (PdAlO(OH) or PdNPs). The PEC platform was denoted as PdNPs/CNS/ST/FTO and it was characterized by SEM, TEM, FTIR, DRX, and EIS.
View Article and Find Full Text PDFImpedimetric wearable sensors are a promising strategy for determining the loss of water content (LWC) from leaves because they can afford on-site and nondestructive quantification of cellular water from a single measurement. Because the water content is a key marker of leaf health, monitoring of the LWC can lend key insights into daily practice in precision agriculture, toxicity studies, and the development of agricultural inputs. Ongoing challenges with this monitoring are the on-leaf adhesion, compatibility, scalability, and reproducibility of the electrodes, especially when subjected to long-term measurements.
View Article and Find Full Text PDFBiochimie
August 2021
Evaluate the chemopreventive potential of the extract from RNC-D. Concentrations of RNC-D extract were tested in HepG2/C3A cells to assess their genotoxic (comet assay), mutagenic (micronucleus test) and antigenotoxic potential (comet assay) . 400 and 40 μg/ml concentrations induced DNA lesions, whereas the 4 μg/ml induced a desmutagenic effect.
View Article and Find Full Text PDFAim: COVID-19 pandemic has caused extensive burden on public life and health care worldwide. This study aimed to assess circulating levels of inflammatory cytokines in adult patients who were hospitalized with COVID-19 and stratified according to age (older or younger than 65 years) aiming to explore associations between these markers of inflammation and comorbidities.
Methods: This was a cross-sectional study of 142 COVID-19 patients consecutively admitted to the University Hospital of the Federal University of São Carlos, from July to October 2020.
An immunosensor was developed using a SAM of an alkanethiol associated with PAMAM(G4) dendrimers based on surface plasmon resonance (SPR) to enhance the sensitivity for troponin T detection in blood samples. The feasibility of using three-dimensional platforms based on dendrimers for the development of immunosensors was demonstrated by evaluating three different generations of these dendrimers (G3, G4, and G5) to detect troponin T. The results showed the efficiency of these 3D platforms in anchoring biomolecules, amplifying the detection of troponin T.
View Article and Find Full Text PDFThe charge storage and membrane applications of graphene oxide (GO) materials are dictated by its intrinsic material properties. Structure-function relationships correlating periodic parameters, such as the hydrated ion radius and ion-GO interactions, are currently lacking yet are needed to provide insight on the charge storage and ion transport mechanism. We report the use of scanning ion conductance microscopy to measure the ion permeability of GO films and evaluate its relationship with the measured capacitance.
View Article and Find Full Text PDFThe co-chaperone CHIP (carboxy terminus of Hsc70 interacting protein) is very important for many cell activities since it regulates the ubiquitination of substrates targeted for proteasomal degradation. However, information on the structure-function relationship of CHIP from plants and how it interacts and ubiquitinates other plant chaperones is still needed. For that, the CHIP ortholog from Sorghum bicolor (SbCHIP) was identified and studied in detail.
View Article and Find Full Text PDFThis study reports, for the first time, the possibility to manufacture analytical devices on polyester substrates using a cutting printer. The protocol involves the design of a layout in a graphical software, the cut into polyester films and the lamination against one or multiple polyester films coated with a thermosensitive layer. The feasibility of the proposed approach was demonstrated through the fabrication of 96-microwell plates, 3D microfluidic mixing and distance-based microfluidic devices.
View Article and Find Full Text PDFACS Infect Dis
November 2019
-Sialidase and cruzipain are important virulence factors from , the etiological agent of Chagas disease, that have highly antigenic domains in their structure and were reported as potential tools for diagnosis of the illness. The aim of the present study is to assess the possibility of using cruzipain and the catalytic domain of -sialidase in a Surface Plasmon Resonance-based immunosensor for the diagnosis of chronic Chagas disease. Immunoassays carried out with canine sera verified that cruzipain allows the detection of anti- antibodies whereas recombinant -sialidase did not yield specific detections, due to the high dilutions of serum used in the immunoassays that hinder the possibility to sense the specific low titer antibodies.
View Article and Find Full Text PDFThe phenomenon of surface plasmon resonance (SPR) through optical sensors was developed from initial studies involving excitation of surface plasmons on metallic substrates. From the beginning, these optical systems have attracted increasing interest for application in different areas, ranging from physics, chemistry, and materials science to biology. Although numerous applications have been explored, the use of SPR in the development of biosensors is by far the most prominent.
View Article and Find Full Text PDFDnaJ/Hsp40 chaperones deliver unfolded proteins and stimulate the ATPase activity of DnaK/Hsp70 via their J-domain. However, the interaction is transient, creating a challenge for detailed analysis. We investigated whether it would be possible to gain further understanding of this interaction by engineering a chimeric polypeptide where the J-domain of Hsp40 was covalently attached to the substrate binding domain (SBD) of Hsp70 by a flexible linker.
View Article and Find Full Text PDF