The CMG helicase is a crucial enzyme complex that plays a vital role in the replication of genomic DNA in eukaryotes. Besides unwinding the DNA template and coordinating the replisome's structure, it is also a key target for signaling pathways that regulate the replication process. We show that a specific serine/threonine residue in the MCM3 subunit of CMG, which has been previously linked to phosphorylation-dependent control mechanisms of genomic DNA replication in human cells, is a conserved phosphorylation site for Chk1 and potentially other protein kinases.
View Article and Find Full Text PDFRibosome-associated quality control (RQC) pathways monitor and respond to ribosome stalling. Using in vivo UV-crosslinking and mass spectrometry, we identified a C-terminal region in Hel2/Rqt1 as an RNA binding domain. Complementary crosslinking and sequencing data for Hel2 revealed binding to 18S rRNA and translated mRNAs.
View Article and Find Full Text PDFRibosomes consist of many small proteins and few large RNA molecules. Both components are necessary for ribosome functioning during translation. According to widely accepted view, bacterial ribosomes contain always the same complement of ribosomal proteins.
View Article and Find Full Text PDFRibosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P.
View Article and Find Full Text PDFTranslation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea.
View Article and Find Full Text PDFMembers of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV) and murine norovirus (MNV).
View Article and Find Full Text PDFEndometriosis is a prevalent health condition in women of reproductive age characterized by ectopic growth of endometrial-like tissue in the extrauterine environment. Thorough understanding of the molecular mechanisms underlying the disease is still incomplete. We dissected eutopic and ectopic endometrial primary stromal cell proteomes to a depth of nearly 6900 proteins using quantitative mass spectrometry with a spike-in SILAC standard.
View Article and Find Full Text PDFWe have changed the amino acid set of the genetic code of Escherichia coli by evolving cultures capable of growing on the synthetic noncanonical amino acid L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) as a sole surrogate for the canonical amino acid L-tryptophan (Trp). A long-term cultivation experiment in defined synthetic media resulted in the evolution of cells capable of surviving Trp→[3,2]Tpa substitutions in their proteomes in response to the 20,899 TGG codons of the E. coli W3110 genome.
View Article and Find Full Text PDFBacterial ribosomes stall on polyproline stretches and require the elongation factor P (EF-P) to relieve the arrest. Yet it remains unclear why evolution has favored the development of EF-P rather than selecting against the occurrence of polyproline stretches in proteins. We have discovered that only a single polyproline stretch is invariant across all domains of life, namely a proline triplet in ValS, the tRNA synthetase, that charges tRNA(Val) with valine.
View Article and Find Full Text PDFNucleic Acids Res
October 2014
During the last step in 40S ribosome subunit biogenesis, the PIN-domain endonuclease Nob1 cleaves the 20S pre-rRNA at site D, to form the mature 18S rRNAs. Here we report that cleavage occurs in particles that have largely been stripped of previously characterized pre-40S components, but retain the endonuclease Nob1, its binding partner Pno1 (Dim2) and the atypical ATPase Rio1. Within the Rio1-associated pre-40S particles, in vitro pre-rRNA cleavage was strongly stimulated by ATP and required nucleotide binding by Rio1.
View Article and Find Full Text PDFThe polymerization of amino acids into proteins occurs on ribosomes, with the rate influenced by the amino acids being polymerized. The imino acid proline is a poor donor and acceptor for peptide-bond formation, such that translational stalling occurs when three or more consecutive prolines (PPP) are encountered by the ribosome. In bacteria, stalling at PPP motifs is rescued by the elongation factor P (EF-P).
View Article and Find Full Text PDFLabel-free proteome quantification methods used in bottom-up mass-spectrometry based proteomics are gaining more popularity as they are easy to apply and can be integrated into different workflows without any extra effort or cost. In the label-free proteome quantification approach, samples of interest are prepared and analyzed separately. Mass-spectrometry is generally not recognized as a quantitative method as the ionization efficiency of peptides is dependent on composition of peptides.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2013
Ribosomes are the protein synthesizing factories of the cell, polymerizing polypeptide chains from their constituent amino acids. However, distinct combinations of amino acids, such as polyproline stretches, cannot be efficiently polymerized by ribosomes, leading to translational stalling. The stalled ribosomes are rescued by the translational elongation factor P (EF-P), which by stimulating peptide-bond formation allows translation to resume.
View Article and Find Full Text PDFAlphavirus replicase complexes are initially formed at the plasma membrane and are subsequently internalized by endocytosis. During the late stages of infection, viral replication organelles are represented by large cytopathic vacuoles, where replicase complexes bind to membranes of endolysosomal origin. In addition to viral components, these organelles harbor an unknown number of host proteins.
View Article and Find Full Text PDFLys34 of the conserved translation elongation factor P (EF-P) is post-translationally lysinylated by YjeK and YjeA--a modification that is critical for bacterial virulence. Here we show that the currently accepted Escherichia coli EF-P modification pathway is incomplete and lacks a final hydroxylation step mediated by YfcM, an enzyme distinct from deoxyhypusine hydroxylase that catalyzes the final maturation step of eukaryotic initiation factor 5A, the eukaryotic EF-P homolog.
View Article and Find Full Text PDFOsmoregulation is a vital physiological function for fish, as it helps maintain a stable intracellular concentration of ions in environments of variable salinities. We focused on a primarily freshwater species, the European whitefish (Coregonus lavaretus), to investigate the molecular mechanisms underlying salinity tolerance and examine whether these mechanisms differ between genetically similar populations that spawn in freshwater vs. brackishwater environments.
View Article and Find Full Text PDFPositive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position.
View Article and Find Full Text PDFInhibitors of protein synthesis cause defects in the assembly of ribosomal subunits. In response to treatment with the antibiotics erythromycin or chloramphenicol, precursors of both large and small ribosomal subunits accumulate. We have used a pulse-labelling approach to demonstrate that the accumulating subribosomal particles maturate into functional 70S ribosomes.
View Article and Find Full Text PDFJ Gen Virol
February 2011
Sobemoviruses possess a viral genome-linked protein (VPg) attached to the 5' end of viral RNA. VPg is processed from the viral polyprotein. In the current study, Cocksfoot mottle virus (CfMV) and Rice yellow mottle virus (RYMV) VPgs were purified from virions and analysed by mass spectrometry.
View Article and Find Full Text PDFJ Biol Chem
September 2010
The Sonic hedgehog (Shh) signaling pathway controls a variety of developmental processes and is implicated in tissue homeostasis maintenance and neurogenesis in adults. Recently, we identified Ulk3 as an active kinase able to positively regulate Gli proteins, mediators of the Shh signaling in mammals. Here, we provide several lines of evidence that Ulk3 participates in the transduction of the Shh signal also independently of its kinase activity.
View Article and Find Full Text PDFRibosomal functions are vital for all organisms. Bacterial ribosomes are stable 2.4 MDa particles composed of three RNAs and over 50 different proteins.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2009
Several protein synthesis inhibitors are known to inhibit ribosome assembly. This may be a consequence of direct binding of the antibiotic to ribosome precursor particles, or it could result indirectly from loss of coordination in the production of ribosomal components due to the inhibition of protein synthesis. Here we demonstrate that erythromycin and chloramphenicol, inhibitors of the large ribosomal subunit, affect the assembly of both the large and small subunits.
View Article and Find Full Text PDFIn ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem-loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m(3)Psi) at position 1915. The gene for pseudouridine methyltransferase was previously not known.
View Article and Find Full Text PDFRibosome subunit assembly in bacteria is a fast and efficient process. Among the nonribosomal proteins involved in ribosome biogenesis are RNA helicases. We describe ribosome biogenesis in Escherichia coli strains lacking RNA helicase DeaD (CsdA) or DbpA.
View Article and Find Full Text PDFPseudouridine synthase RluD converts uridines at positions 1911, 1915, and 1917 of 23S rRNA to pseudouridines. These nucleotides are located in the functionally important helix-loop 69 of 23S rRNA. RluD is the only pseudouridine synthase that is required for normal growth in Escherichia coli.
View Article and Find Full Text PDF