Publications by authors named "Kyusang Lee"

Polymer-metal-organic framework (polymer-MOF) composites have garnered significant interest as polymers can enhance the processability and industrial applicability of MOFs. Thin films of these composites are particularly attractive for applications in sensing, separations, and flexible electronics. Solution shearing, a meniscus-guided coating technique, has emerged as a scalable process for fabricating thin films of MOFs, and can produce large-area films within minutes.

View Article and Find Full Text PDF

Excessive human exposure to toxic gases can lead to chronic lung and cardiovascular diseases. Thus, precise in situ monitoring of toxic gases in the atmosphere is crucial. Here, we present an artificial olfactory system for spatiotemporal recognition of NO gas flow by integrating a network of chemical receptors with a near-sensor computing.

View Article and Find Full Text PDF

Arthropods' eyes are effective biological vision systems for object tracking and wide field of view because of their structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in three-dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and a form of stereopsis and is capable of achieving object recognition in 3D space.

View Article and Find Full Text PDF

In this paper, we demonstrate low-thermal-budget ferroelectric field-effect transistors (FeFETs) based on the two-dimensional ferroelectric CuInPS (CIPS) and oxide semiconductor InZnO (IZO). The CIPS/IZO FeFETs exhibit nonvolatile memory windows of ∼1 V, low off-state drain currents, and high carrier mobilities. The ferroelectric CIPS layer serves a dual purpose by providing electrostatic doping in IZO and acting as a passivation layer for the IZO channel.

View Article and Find Full Text PDF

Introduction: For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures.

View Article and Find Full Text PDF

A neuromuscular junction (NMJ) is a particularized synapse that activates muscle fibers for macro-motions, requiring more energy than computation. Emulating the NMJ is thus challenging owing to the need for both synaptic plasticity and high driving power to trigger motions. Here, we present an artificial NMJ using CuInPS (CIPS) as a gate dielectric integrated with an AlGaN/GaN-based high-electron mobility transistor (HEMT).

View Article and Find Full Text PDF

Significant effort for demonstrating a gallium nitride (GaN)-based ferroelectric metal-oxide-semiconductor (MOS)-high-electron-mobility transistor (HEMT) for reconfigurable operation via simple pulse operation has been hindered by the lack of suitable materials, gate structures, and intrinsic depolarization effects. In this study, we have demonstrated artificial synapses using a GaN-based MOS-HEMT integrated with an α-InSe ferroelectric semiconductor. The van der Waals heterostructure of GaN/α-InSe provides a potential to achieve high-frequency operation driven by a ferroelectrically coupled two-dimensional electron gas (2DEG).

View Article and Find Full Text PDF

Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable.

View Article and Find Full Text PDF

Micro-LEDs (µLEDs) have been explored for augmented and virtual reality display applications that require extremely high pixels per inch and luminance. However, conventional manufacturing processes based on the lateral assembly of red, green and blue (RGB) µLEDs have limitations in enhancing pixel density. Recent demonstrations of vertical µLED displays have attempted to address this issue by stacking freestanding RGB LED membranes and fabricating top-down, but minimization of the lateral dimensions of stacked µLEDs has been difficult.

View Article and Find Full Text PDF

Heterogeneous integration of single-crystal materials offers great opportunities for advanced device platforms and functional systems. Although substantial efforts have been made to co-integrate active device layers by heteroepitaxy, the mismatch in lattice polarity and lattice constants has been limiting the quality of the grown materials. Layer transfer methods as an alternative approach, on the other hand, suffer from the limited availability of transferrable materials and transfer-process-related obstacles.

View Article and Find Full Text PDF

As machine vision technology generates large amounts of data from sensors, it requires efficient computational systems for visual cognitive processing. Recently, in-sensor computing systems have emerged as a potential solution for reducing unnecessary data transfer and realizing fast and energy-efficient visual cognitive processing. However, they still lack the capability to process stored images directly within the sensor.

View Article and Find Full Text PDF

Recent advances in flexible and stretchable electronics have led to a surge of electronic skin (e-skin)-based health monitoring platforms. Conventional wireless e-skins rely on rigid integrated circuit chips that compromise the overall flexibility and consume considerable power. Chip-less wireless e-skins based on inductor-capacitor resonators are limited to mechanical sensors with low sensitivities.

View Article and Find Full Text PDF

Intersubband (intraband) transitions allow absorption of photons in the infrared spectral regime, which is essential for IR-photodetector and optical communication applications. Among various technologies, nanodisks embedded in nanowires offer a unique opportunity to be utilized in intraband devices due to the ease of tuning the fundamental parameters such as strain distribution, band energy, and confinement of the active region. Here, we show the transverse electric polarized intraband absorption using InGaN/GaN nanodisks cladded by AlGaN.

View Article and Find Full Text PDF

Multispectral photodetectors are emerging devices capable of detecting photons in multiple wavelength ranges, such as visible (VIS), near infrared (NIR), etc. Image data acquired with these photodetectors can be used for effective object identification and navigations owing to additional information beyond human vision, including thermal image and night vision. However, these capabilities are hindered by the structural complexity arising from the integration of multiple heterojunctions and selective absorbers.

View Article and Find Full Text PDF

Strongly bound excitons are a characteristic hallmark of 2D semiconductors, enabling unique light-matter interactions and novel optical applications. Platinum diselenide (PtSe ) is an emerging 2D material with outstanding optical and electrical properties and excellent air stability. Bulk PtSe is a semimetal, but its atomically thin form shows a semiconducting phase with the appearance of a band-gap, making one expect strongly bound 2D excitons.

View Article and Find Full Text PDF

: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform.

View Article and Find Full Text PDF

Existing transfer technologies in the construction of film-based electronics and devices are deeply established in the framework of native solid substrates. Here, we report a capillary approach that enables a fast, robust, and reliable transfer of soft films from liquid in a defect-free manner. This capillary transfer is underpinned by the transfer front of dynamic contact among receiver substrate, liquid, and film, and can be well controlled by a selectable motion direction of receiver substrates at a high speed.

View Article and Find Full Text PDF

The time-of-flight (ToF) principle is a method used to measure distance and construct three-dimensional (3D) images by detecting the time or the phase difference between emitted and back-reflected optical flux. The ToF principle has been employed for various applications including light ranging and detection (LiDAR), machine vision and biomedical engineering; however, bulky system size and slow switching speed have hindered the widespread application of ToF technology. To alleviate these issues, a demonstration of hetero-integration of GaN-based high electron mobility transistors (HEMTs) and GaAs-based vertical cavity surface emitting lasers (VCSELs) on a single platform via a cold-welding method was performed.

View Article and Find Full Text PDF

Although conventional homoepitaxy forms high-quality epitaxial layers, the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances, is fundamentally unavoidable in highly lattice-mismatched epitaxy.

View Article and Find Full Text PDF

Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices. Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain. The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies.

View Article and Find Full Text PDF

Background: Circulating tumor cells (CTCs) are frequently detected in patients with advanced-stage malignant tumors and could act as a predictor of poor prognosis. However, there is a paucity of data on the relationship between CTC number and primary tumor volume in patients with lung cancer. Therefore, our study aimed to evaluate the relationship between CTC number and primary tumor volume in patients with lung adenocarcinoma.

View Article and Find Full Text PDF

Despite the rapidly increasing demand for accurate ultraviolet (UV) detection in various applications, conventional Si-based UV sensors are less accurate due to disruption by visible light. Recently, Ga(Al)N-based photodiodes have attracted great interest as viable platforms that can avoid such issues because their wide bandgap enables efficient detection of UV light and they are theoretically blind to visible and infrared light. However, the heteroepitaxy of a Ga(Al)N layer on sapphire substrates inevitably leads to defects, and the Ga(Al)N photodiode (PD) becomes not perfectly insensible to visible light.

View Article and Find Full Text PDF

Solid-state thermionic devices based on van der Waals structures were proposed for nanoscale thermal to electrical energy conversion and integrated electronic cooling applications. We study thermionic cooling across gold-graphene-WSe-graphene-gold structures computationally and experimentally. Graphene and WSe layers were stacked, followed by deposition of gold contacts.

View Article and Find Full Text PDF

Coherent light-matter interaction can transiently modulate the quantum states of matter under nonresonant laser excitation. This phenomenon, called the optical Stark effect, is one of the promising candidates for realizing ultrafast optical switches. However, the ultrafast modulations induced by the coherent light-matter interactions usually involve unwanted incoherent responses, significantly reducing the overall operation speed.

View Article and Find Full Text PDF

Periodontitis is an infectious disease that is associated with microorganisms that colonize the tooth surface. Clinically, periodontal condition stability reflects dynamic equilibrium between bacterial challenge and host response. Therefore, periodontal pathogen assessment can assist in the early detection of periodontitis.

View Article and Find Full Text PDF