Publications by authors named "Kisung Ko"

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is a crucial development in regenerative medicine, providing patient-specific cells for therapeutic uses. Traditional methods often utilize viral vectors and transcription factors that pose tumorigenic risks, rendering them unsuitable for clinical applications. This study explored the use of chemicals as a non-tumorigenic alternative for cell reprogramming.

View Article and Find Full Text PDF

Prostatic acid phosphatase (PAP) is a specific protein that is highly expressed in prostate cancer. In this study, we constructed two recombinant PAP fusion genes: PAP fused to the immunoglobulin G (IgG) Fc fragment (designated PAP-Fc) and PAP-Fc fused to the endoplasmic reticulum retention sequence KDEL (designated PAP-FcK). Transgenic Nicotiana tabacum plants expressing these recombinant macromolecular proteins (MPs) were generated using Agrobacterium-mediated transformation, and the presence of both genes was confirmed through genomic PCR.

View Article and Find Full Text PDF

Background: This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL).

Objective: Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs.

View Article and Find Full Text PDF

Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins.

View Article and Find Full Text PDF

Transgenic tobacco plant expressed EpCAM-Fc fusion proteins to induce in vivo immune responses producing anti-EpCAM antibodies inhibiting human colorectal cancer cell invasion and migration. Plant is emerging as a promising alternative to produce valuable immunotherapeutic vaccines. In this study, we examined the in vivo anti-cancer efficacy of epidermal cell adhesion molecule (EpCAM)-Fc and EpCAM-FcK fusion proteins produced in transgenic plants as colorectal cancer vaccine candidates.

View Article and Find Full Text PDF
Article Synopsis
  • AI platforms are important tools in genetics and medicine, helping to analyze lots of patient data and find new diseases.
  • They are making it possible to better understand complex health issues and improve treatments for things like rare diseases and cancers.
  • These technologies are helping doctors make better decisions for patient care, leading to more personalized and effective treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Traditional monoclonal antibodies like Trastuzumab have limitations when treating HER2-positive breast cancer, especially in resistant cases.
  • The study presents a plant-derived anti-HER2 antibody known as VHH-FcK, which shows strong binding dynamics and durability against HER2 on living cells.
  • In trials with immune-deficient mice, VHH-FcK demonstrated higher antitumor effectiveness, particularly against tumors that do not respond to Trastuzumab, indicating its potential as a new treatment option.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates producing therapeutic monoclonal antibodies (mAbs) in transgenic plants, highlighting benefits like large-scale production and reduced risk of animal contaminants.
  • It focuses on modifying the mAb SO57 using Fc-engineering with an ER-retention signal to improve its binding to the human neonatal Fc receptor (hFcRn), which influences the antibody's lifespan in circulation.
  • Results showed that engineered variants of mAbK SO57 maintained similar glycan structures and neutralizing activity against the rabies virus, indicating enhanced effectiveness without compromising their function.
View Article and Find Full Text PDF

Sickle Cell Disease (SCD) is a severe genetic disorder causing vascular occlusion and pain by upregulating the adhesion molecule P-selectin on endothelial cells and platelets. It primarily affects infants and children, causing chronic pain, circulatory problems, organ damage, and complications. Thus, effective treatment and management are crucial to reduce SCD-related risks.

View Article and Find Full Text PDF

The transgenic plant is a promising strategy for the production of highly valuable biotherapeutic proteins such as recombinant vaccines and antibodies. To achieve an efficient level of protein production, codon sequences and expression cassette elements need to be optimized. However, the systematical expression of recombinant proteins in plant biomass can generally be controlled for the production of therapeutic proteins after the generation of transgenic plants.

View Article and Find Full Text PDF

LSC CO17-1AK and anti-HER2 VHH-FcK can be produced in a single plant and exhibit anti-tumor activities comparable to those of their respective parent antibodies. Recombinant monoclonal antibodies (mAbs) which can be applied to treat various cancers, are primarily produced using mammalian, insect, and bacteria cell culture systems. Plant expression systems have also been developed to produce antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers co-expressed two prostate cancer antigens, PAP and PSA, fused to an antibody fragment in plants, which successfully produced proteins that can trigger immune responses in mice.
  • The study found that these proteins were effectively recognized by antibodies and showed good binding affinity, indicating their potential effectiveness in immunotherapy.
  • The findings suggest that using a transient plant expression system to create a dual-antigen protein may enhance therapeutic strategies against the heterogeneous nature of prostate cancer.
View Article and Find Full Text PDF

In this study, recombinant Fc-fused Prostate acid phosphatase (PAP) proteins were produced in transgenic plants. PAP was fused to immunoglobulin (Ig) A and M Fc domain (PAP-IgA Fc and PAP-IgM Fc), which were tagged to the ER retention sequence KDEL to generate PAP-IgA FcK and PAP-IgM FcK. Agrobacteriummediated transformation was performed to produce transgenic tobacco plants expressing four recombinant proteins.

View Article and Find Full Text PDF

Epidermal cell adhesion molecule (EpCAM) is a tumor-associated antigen (TAA), which has been considered as a cancer vaccine candidate. The EpCAM protein fused to the fragment crystallizable region of immunoglobulin G (IgG) tagged with KDEL endoplasmic reticulum (ER) retention signal (EpCAM-FcK) has been successfully expressed in transgenic tobacco ( cv. Xanthi) and purified from the plant leaf.

View Article and Find Full Text PDF

Transgenic expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using -mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are an indicator of metastatic progression and relapse. Since non-CTC cells such as red blood cells outnumber CTCs in the blood, the separation and enrichment of CTCs is key to improving their detection sensitivity. The ATP luminescence assay can measure intracellular ATP to detect cells quickly but has not yet been used for CTC detection in the blood because extracellular ATP in the blood, derived from non-CTCs, interferes with the measurement.

View Article and Find Full Text PDF

Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information.

View Article and Find Full Text PDF

Immunization with thetumor-associated antigen GA733 glycoprotein, which is highly expressed in colorectal cancer, is considered to be a promising strategy for cancer prevention and treatment. We cloned a fusion gene of GA733 and immunoglobulin Fc fragment (GA733-Fc), and that of GA733-Fc and an endoplasmic reticulum retention motif (GA733-FcK) into the Cowpea mosaic virus (CPMV)-based transient plant expression vector, pEAQ-. (LBA4404) transformed with the vectors pEAQ--GA733-Fc and pEAQ--GA733-FcK was infiltrated into the leaves of plants.

View Article and Find Full Text PDF

The epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen and a potential target for tumor vaccine. The EpCAM is a cell-surface glycoprotein highly expressed in colorectal carcinomas. The objective of the present study is to develop an edible vaccine system through -mediated transformation in Chinese cabbage ().

View Article and Find Full Text PDF

Pathogenic animal and human viruses present a growing and persistent threat to humans worldwide. Ebola virus (EBOV) causes zoonosis in humans. Here, two structurally different anti-Ebola 13F6 antibodies, recognizing the heavily glycosylated mucin-like domain (MLD) of the glycoprotein (GP), were expressed in transgenic plants and designed as inexpensive and effective diagnostic antibodies against Ebola virus disease (EVD).

View Article and Find Full Text PDF

The antigen-antibody complex (AAC) has novel functions for immunomodulation, encouraging the application of diverse quaternary protein structures for vaccination. In this study, GA733 antigen and anti-GA733 antibody proteins were both co-expressed to obtain the AAC protein structures in a F1 plant obtained by crossing the plants expressing each protein. In F1 plant, the antigen and antibody assembled to form a large quaternary circular ACC structure (~30 nm).

View Article and Find Full Text PDF

Background: Benzalkonium chloride (BAK), commonly used in glaucoma treatment, is an eye drop preservative with dose-dependent toxicity. Previous studies have observed the multi-functional benefits of angiogenin (ANG) against glaucoma. In our study, we evaluated ANG's cytoprotective effect on the trabecular meshwork (TM) damage induced by BAK.

View Article and Find Full Text PDF

Purpose: In this study, we tested whether the resveratrol-enriched peanut sprout extracts cultivated with fermented sawdust medium (PSEFS) could suppress benign prostatic hyperplasia (BPH) and .

Materials And Methods: The mode of action of PSEFS was estimated by employing high-performance liquid chromatography analysis, MTT assay, cell counting, cell cycle analysis, immunoblots, and immunoprecipitation and electrophoretic mobility shift assay. efficacy of PSEFS was analyzed in BPH animal model immunostaining and enzyme-linked immunosorbent assay.

View Article and Find Full Text PDF

In humans, parthenogenesis and androgenesis occur naturally in mature cystic ovarian teratomas and androgenetic complete hydatidiform moles (CHM), respectively. Our previous study has reported human parthenogenetic induced pluripotent stem cells from ovarian teratoma-derived fibroblasts and screening of imprinted genes using genome-wide DNA methylation analysis. However, due to the lack of the counterparts of uniparental cells, identification of new imprinted differentially methylated regions has been limited.

View Article and Find Full Text PDF

Overexpression of human epidermal growth factor receptor type 2 (HER2) is considered as a prognostic factor of breast cancer, which is positively associated with recurrence when cancer metastasizes to the lymph nodes. Here, we expressed the single variable domain on a heavy chain (VHH) form of anti-HER2 camelid single domain antibody in tobacco plants and compared its in vitro anticancer activities with the anti-HER2 full size antibody. The gene expression cassette containing anti-HER2 camelid single domain antibody VHH fused to human IgG Fc region with KDEL endoplasmic reticulum (ER) (VHH-FcK) was transferred into the tobacco plant via the -mediated transformation.

View Article and Find Full Text PDF