Publications by authors named "Kirstie Andrews"

Anterior cruciate ligament (ACL) reconstruction rates are rising, particularly among female athletes, though causes remain unclear. This study: (i) identify accurate machine learning models to predict ACL length, strain, and force during six high-impact and daily activities; (ii) assess the significance of kinematic and constitutional parameters; and (iii) analyse gender-based injury risk patterns. Using 9,375 observations per variable, 42 models were trained.

View Article and Find Full Text PDF

Electrospinning is an outstanding manufacturing technique for producing nano-micro-scaled fibrous scaffolds comparable to biological tissues. However, the solvents used are normally hazardous for the health and the environment, which compromises the sustainability of the process and the industrial scaling. This novel study compares different machine learning models to predict how green solvents affect the morphology, topography and mechanical properties of gelatin-based scaffolds.

View Article and Find Full Text PDF

Currently, the use of autografts is the gold standard for the replacement of many damaged biological tissues. However, this practice presents disadvantages that can be mitigated through tissue-engineered implants. The aim of this study is to explore how machine learning can mechanically evaluate 2D and 3D polyvinyl alcohol (PVA) electrospun scaffolds (one twisted filament, 3 twisted filament and 3 twisted/braided filament scaffolds) for their use in different tissue engineering applications.

View Article and Find Full Text PDF

Nontyphoidal salmonellosis is an important foodborne and zoonotic infection that causes significant global public health concern. Diverse serovars are multidrug-resistant and encode several virulence indicators; however, little is known on the role prophages play in driving these traits. Here, we extracted prophages from seventy-five genomes which represent the fifteen important serovars in the United Kingdom.

View Article and Find Full Text PDF

Gelatin is a natural polymer commonly used in biomedical applications in combination with other materials due to its high biocompatibility, biodegradability, and similarity to collagen, principal protein of the extracellular matrix (ECM). The aim of this study was to evaluate the suitability of gelatin as the sole material to manufacture tissue engineering scaffolds by electrospinning. Gelatin was electrospun in nine different concentrations onto a rotating collector and the resulting scaffold's mechanical properties, morphology and topography were assessed using mechanical testing, scanning electron microscopy and white light interferometry, respectively.

View Article and Find Full Text PDF

The anterior cruciate ligament (ACL) plays a key role in the stability of the knee joint restricting the rotation and anterior tibial translation. However, there is a lack of knowledge of the in vivo ACL mechanical behaviour during high impact manoeuvres. The motion of 12 young participants with healthy knees was captured while they performed the following activities: walking, running, cross-over cutting, sidestep cutting, jumping and jumping with one leg.

View Article and Find Full Text PDF

One of the major obstacles to obtaining human cells of a defined and reproducible standard suitable for use as medical therapies is the necessity for FCS (fetal calf serum) media augmentation in routine cell culture applications. FCS has become the supplement of choice for cell culture research, as it contains an array of proteins, growth factors and essential ions necessary for cellular viability and proliferation in vitro. It is, however, a potential route for the introduction of zoonotic pathogens and makes defining the cell culture milieu impossible in terms of reproducibility, as the precise composition of each batch of serum not only changes but is in fact extremely variable.

View Article and Find Full Text PDF

Background: This work concerned the endothelialization of vascular prostheses and subsequent improvement of functionality with respect to tissue engineering. The aim of the study was to investigate the initial, pre-shear stress cellular behavior with respect to three vascular biomaterials to explain subsequent cellular responses to physiological shear stresses.

Materials And Methods: Expanded polytetrafluoroethylene (ePTFE), polyethyleneterephthalate (polyester; Dacron; PET), and electrostatically spun polyurethane (PU) (all pre-impregnated with collagen I/III) were cell-seeded with L929 immortalized murine fibroblasts or human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Electrostatic spinning is a potentially significant technique for scaffold production within the field of tissue engineering; however, the effect of sterilisation upon these structures is not known. This research investigated the extent of any topographical alteration to electrostatically spun scaffolds post-production through sterilisation, and examined any subsequent effect on contacting cells. Scaffolds made from Tecoflex SG-80A polyurethane were sterilised using ethylene oxide and UV-ozone.

View Article and Find Full Text PDF