Publications by authors named "Khaled H Almabruk"

Polyynes produced by bacteria have promising applications in agriculture and medicine due to their potent antimicrobial activities. Polyyne biosynthetic genes have been identified in and . However, the molecular mechanisms underlying the regulation of polyyne biosynthesis remain largely unknown.

View Article and Find Full Text PDF

Nature is a prolific producers of bioactive natural products with an array of biological activities and impact on human and animal health. But with great power comes great responsibility, and the organisms that produce a bioactive compound must be resistant to its biological effects to survive during production/accumulation. Microorganisms, particularly bacteria, have developed different strategies to prevent self-toxicity.

View Article and Find Full Text PDF

Burkholderia glumae converts the guanine base of guanosine triphosphate into an azapteridine and methylates both the pyrimidine and triazine rings to make toxoflavin. Strains of Burkholderia thailandensis and Burkholderia pseudomallei have a gene cluster encoding seven putative biosynthetic enzymes that resembles the toxoflavin gene cluster. Four of the enzymes are similar in sequence to BgToxBCDE, which have been proposed to make 1,6-didesmethyltoxoflavin (1,6-DDMT).

View Article and Find Full Text PDF

2-Epi-5-epi-valiolone synthase (EEVS), a C-sugar phosphate cyclase (SPC) homologous to 3-dehydroquinate synthase (DHQS), was discovered during studies of the biosynthesis of the CN-aminocyclitol family of natural products. EEVS was originally thought to be present only in certain actinomycetes, but analyses of genome sequences showed that it is broadly distributed in both prokaryotes and eukaryotes, including vertebrates. Another SPC, desmethyl-4-deoxygadusol synthase (DDGS), was later discovered as being involved in the biosynthesis of mycosporine-like amino acid sunscreen compounds.

View Article and Find Full Text PDF

On the basis of its reported chemical structure, perbergin, a Rhodococcus fascians virulence quencher from the bark of Dalbergia pervillei, and its isomer were synthesized in nine steps with a 13.5% yield. However, the NMR spectra of the synthetic products were inconsistent with those reported in the literature.

View Article and Find Full Text PDF

Ultraviolet-protective compounds, such as mycosporine-like amino acids (MAAs) and related gadusols produced by some bacteria, fungi, algae, and marine invertebrates, are critical for the survival of reef-building corals and other marine organisms exposed to high-solar irradiance. These compounds have also been found in marine fish, where their accumulation is thought to be of dietary or symbiont origin. In this study, we report the unexpected discovery that fish can synthesize gadusol de novo and that the analogous pathways are also present in amphibians, reptiles, and birds.

View Article and Find Full Text PDF

Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase.

View Article and Find Full Text PDF

A mutasynthetic strategy has been used to generate fluorinated TM-025 and TM-026, two biosynthetically engineered pactamycin analogues produced by Streptomyces pactum ATCC 27456. The fluorinated compounds maintain excellent activity and selectivity toward chloroquine-sensitive and multidrug-resistant strains of malarial parasites as the parent compounds. The results also provide insights into the biosynthesis of 3-aminobenzoic acid in S.

View Article and Find Full Text PDF

The pseudo-glycosyltransferase VldE catalyzes non-glycosidic C-N coupling between an unsaturated cyclitol and a saturated aminocyclitol with the conservation of the stereochemical configuration of the substrates to form validoxylamine A 7'-phosphate, the biosynthetic precursor of the antibiotic validamycin A. To study the molecular basis of its mechanism, the three-dimensional structures of VldE from Streptomyces hygroscopicus subsp. limoneus was determined in apo form, in complex with GDP, in complex with GDP and validoxylamine A 7'-phosphate, and in complex with GDP and trehalose.

View Article and Find Full Text PDF

From A to B: Through detailed biochemical investigations, we discovered that VldW, an α-ketoglutarate/Fe(II)-dependent dioxygenase, regioselectively hydroxylates validamycin A to validamycin B. The results provide insights into the biosynthesis of hydroxylated validamycins and could be used to control the metabolic outcomes of the validamycin pathway.

View Article and Find Full Text PDF

Glycosyltransferases are ubiquitous in nature. They catalyze a glycosidic bond formation between sugar donors and sugar or nonsugar acceptors to produce oligo/polysaccharides, glycoproteins, glycolipids, glycosylated natural products, and other sugar-containing entities. However, a trehalose 6-phosphate synthase-like protein has been found to catalyze an unprecedented nonglycosidic C-N bond formation in the biosynthesis of the aminocyclitol antibiotic validamycin A.

View Article and Find Full Text PDF