Background: Previous cross-sectional transcriptomics studies on diabetic kidney disease (DKD) kidney tissue have shown correlations between gene expression and both disease status and kidney function at the time of biopsy; however, longitudinal data are scarce.
Methods: We utilized clinical follow-up data up to five years post-biopsy, linking the transcriptomes of diagnostic kidney biopsies to progression rates and outcomes in 19 patients with DKD. Patients were stratified into “rapid progressors” and “non-rapid progressors” based on clinical parameters (eGFR slope, CKD stage advancement, degree of albuminuria, composite outcome of kidney failure or 40% eGFR decline).
Background: Acute kidney injury (AKI) is a frequent complication after liver transplantation (LT) and is associated with morbidity, mortality, and late development of chronic kidney disease. Risk factors for AKI after LT include patient, perioperative and graft-related factors. The exact renal molecular mechanisms behind AKI in LT are unclear.
View Article and Find Full Text PDFPodocytes are kidney glomerular cells that depend on rigorously regulated cytoskeleton components and integrins to form and maintain the so-called foot processes, apparatuses that attach podocytes to the glomerular basement membrane and connect them to neighboring podocytes. In diabetic kidney disease (DKD) these foot processes are effaced as a result of cytoskeleton dysregulation, a phenomenon that gradually reduces glomerular filtration. Cytoskeleton-associated protein 4 (CKAP4) is a known linker between the endoplasmic reticulum, integrins, and microtubular cytoskeleton.
View Article and Find Full Text PDFRecent studies have demonstrated that the transcription factor hepatocyte nuclear factor 4α (HNF4A) drives epithelial differentiation in the renal proximal tubules (PTs) and is critical for maintaining a mature PT phenotype. Furthermore, HNF4A down-regulation has been observed following kidney injury in mouse models. The aim of the present work was to investigate the role of HNF4A during acute and chronic human kidney disease and the loss of the mature PT phenotype in cultured PT cells.
View Article and Find Full Text PDFA common observation in diabetic kidney disease is lipid accumulation, but the mechanism(s) underlying this pathology is unknown. Inhibition of Vascular endothelial growth factor B (VEGF-B) signaling was shown to prevent glomerular lipid accumulation and ameliorated diabetic kidney disease in experimental models. Here, we examined kidney biopsies from patients with Type 2 (84%) and Type 1 diabetes (16%), combined with data mining of RNA-seq dataset analyses in patients with diabetic kidney disease.
View Article and Find Full Text PDFWhen discussing glomerular function, one cell type is often left out, the mesangial cell (MC), probably since it is not a part of the filtration barrier per se. The MCs are instead found between the glomerular capillaries, embedded in their mesangial matrix. They are in direct contact with the endothelial cells and in close contact with the podocytes and together they form the glomerulus.
View Article and Find Full Text PDFBackground: Patients with end-stage kidney disease (ESKD) require dialysis or transplantation for their survival. There are few experimental animal models mimicking the human situation in which the animals are dependent on dialysis for their survival. We developed a peritoneal dialysis (PD) system for rats to enable long-term treatment under controlled conditions.
View Article and Find Full Text PDFIntroduction: IgA nephropathy (IgAN) is the most common glomerulonephritis globally. Because of the heterogeneity of the disease prognostic biomarkers are highly needed.
Aim: To investigate associations between galactose-deficient IgA1 (Gd-IgA1) concentrations in plasma and urine and disease activity and progression in patients with IgAN.
The lifetime risk of kidney disease in people with diabetes is 10-30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPβ, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs.
View Article and Find Full Text PDFSignificance Statement: A tightly regulated actin cytoskeleton attained through balanced activity of RhoGTPases is crucial to maintaining podocyte function. However, how RhoGTPases are regulated by geranylgeranylation, a post-translational modification, has been unexplored. The authors found that loss of the geranylgeranylation enzyme geranylgeranyl transferase type-I (GGTase-I) in podocytes led to progressive albuminuria and foot process effacement in podocyte-specific GGTase-I knockout mice.
View Article and Find Full Text PDFDiabetic kidney disease is a consequence of hyperglycemia and other complex events driven by early glomerular hemodynamic changes and a progressive expansion of the mesangium. The molecular mechanisms behind the pathophysiological alterations of the mesangium are yet to be elucidated. This study aimed at investigating whether lipid signaling might be the missing link.
View Article and Find Full Text PDFThe glomerulus is the functional unit for filtration of blood and formation of primary urine. This intricate structure is composed of the endothelium with its glycocalyx facing the blood, the glomerular basement membrane and the podocytes facing the urinary space of Bowman's capsule. The mesangial cells are the central hub connecting and supporting all these structures.
View Article and Find Full Text PDFRationale & Objective: Immunoglobulin A nephropathy (IgAN) is a common glomerular disease, with mesangial cell proliferation as a major feature. There is no disease-specific treatment. Platelet-derived growth factor (PDGF) contributes to the pathogenesis of IgAN.
View Article and Find Full Text PDFThe glomerulus is a compact cluster of capillaries responsible for blood filtration and initiating urine production in the renal nephrons. A trilaminar structure in the capillary wall forms the glomerular filtration barrier (GFB), composed of glycocalyx-enriched and fenestrated endothelial cells adhering to the glomerular basement membrane and specialized visceral epithelial cells, podocytes, forming the outermost layer with a molecular slit diaphragm between their interdigitating foot processes. The unique dynamic and selective nature of blood filtration to produce urine requires the functionality of each of the GFB components, and hence, mimicking the glomerular filter has been challenging, though critical for various research applications and drug screening.
View Article and Find Full Text PDFAll capillary endothelia, including those of the glomeruli, have a luminal cell surface layer (ESL) consisting of glycoproteins, glycolipids, proteoglycans (PGs) and glycosaminoglycans. Previous results have demonstrated that an intact ESL is necessary for a normal filtration barrier and damage to the ESL coupled to proteinuria is seen for example in diabetic kidney disease (DKD). We used the principles of ion exchange chromatography in vivo to elute the highly negatively charged components of the ESL with a 1 M NaCl solution in rats.
View Article and Find Full Text PDFNephrol Dial Transplant
December 2020
Background: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, affecting ∼30% of the rapidly growing diabetic population, and strongly associated with cardiovascular risk. Despite this, the molecular mechanisms of disease remain unknown.
Methods: RNA sequencing (RNAseq) was performed on paired, micro-dissected glomerular and tubulointerstitial tissue from patients diagnosed with DN [n = 19, 15 males, median (range) age: 61 (30-85) years, chronic kidney disease stages 1-4] and living kidney donors [n = 20, 12 males, median (range) age: 56 (30-70) years].
Orellanine is a nephrotoxin found in mushrooms of the Cortinarius family. Accidental intake of this substance may cause renal failure. Orellanine is specific for proximal tubular cells and could, therefore, potentially be used as treatment for metastatic renal cancer, which originates from these cells.
View Article and Find Full Text PDFRenal cell carcinoma (RCC), arising from the proximal tubule in the kidney, accounts for approximately 85% of kidney cancers and causes over 140,000 annual deaths worldwide. In the last decade, several new therapies have been identified for treatment of metastatic RCC. Although these therapies increase survival time compared to standard care, none of them has curative properties.
View Article and Find Full Text PDFPregnant women with polycystic ovary syndrome (PCOS) are often overweight or obese. To study the effects of maternal androgen excess in obese dams on metabolism, placental function and fetal growth, female C57Bl6J mice were fed a control (CD) or a high fat/high sucrose (HF/HS) diet for 4-10 weeks, and then mated. On gestational day (GD) 15.
View Article and Find Full Text PDFJ Am Soc Nephrol
October 2017
IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN.
View Article and Find Full Text PDFBackground: Accidental intake of mushrooms of the Cortinarius species (deadly webcap) may cause irreversible renal damage and the need for dialysis or transplantation. The species is found in forests of Northern Europe, Scandinavia and North America and may be mistaken for other edible mushrooms. The highly selective nephrotoxic compound of the mushroom is called orellanine.
View Article and Find Full Text PDFPurpose Of Review: The kidney is a highly complex organ and renal function depends on many factors, both extrinsic to the kidney and intrinsic. The kidney responds both to systemic hormonal and neuronal signals and to autocrine and paracrine factors produced within the renal tissue. Recently, there has been an increased emphasis on crosstalk in and between different compartments in the kidney.
View Article and Find Full Text PDF