The fabrication of thin oxide films at low temperatures using simple processes has been a significant challenge associated with expanding the potential applications of these materials. Recent developments have demonstrated that the photo-assisted chemical solution deposition (PACSD) process offers a promising means of solving these difficulties, allowing high volume, on-demand production of variable sample sizes using an advantageous wet process. A better understanding of the crystal growth phenomena associated with this process, however, is required to enable various oxide thin films to be prepared using this new concept.
View Article and Find Full Text PDFThe effective annealing times (t(eff)) for nucleating various oxides from an amorphous matrix under nanosecond pulsed laser irradiation have been determined. The oxides, which had perovskite, bixbyite, anatase, and pyrochlore structures, showed similar t(eff) values for crystal nucleation of around 60 ns. This indicates that the effective annealing time is a good universal value for evaluating pulsed laser-induced oxide nucleation.
View Article and Find Full Text PDFHPLC-MS and (1)H, (13)C, and 2D NMR analyses were used to identify new addition products between 3-sulfanylhexan-1-ol (3SH) and o-quinones derived from (+)-catechin, (-)-epicatechin, and caftaric acid. The kinetics of formation of these adducts were monitored in a wine model solution and in a must-like medium by HPLC-UV-MS with the aim of understanding the chemical mechanism involved in reactions between volatile thiols and o-quinones. One o-quinone-caftaric acid/3SH adduct, three o-quinone-(+)-catechin/3SH adducts, and three o-quinone-(-)-epicatechin/3SH adducts were characterized.
View Article and Find Full Text PDF