A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

UV-assisted nucleation and growth of oxide films from chemical solutions. | LitMetric

UV-assisted nucleation and growth of oxide films from chemical solutions.

Chem Soc Rev

Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan.

Published: April 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The fabrication of thin oxide films at low temperatures using simple processes has been a significant challenge associated with expanding the potential applications of these materials. Recent developments have demonstrated that the photo-assisted chemical solution deposition (PACSD) process offers a promising means of solving these difficulties, allowing high volume, on-demand production of variable sample sizes using an advantageous wet process. A better understanding of the crystal growth phenomena associated with this process, however, is required to enable various oxide thin films to be prepared using this new concept. Under pulsed ultraviolet (UV) laser irradiation, crystal growth has been confirmed to proceed by near-instantaneous photothermal heating and photochemical effects at the reaction interface. Vacuum UV lamp irradiation is also a useful means of generating oxide nuclei, since it results in effective chemical bond cleavage and simultaneously produces reactive oxidant (O3/O((1)D)) species. In this review, the nucleation and growth mechanisms which occur during the PACSD process are introduced and discussed and we examine the future possible applications of this process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cs60222bDOI Listing

Publication Analysis

Top Keywords

nucleation growth
8
oxide films
8
pacsd process
8
crystal growth
8
process
5
uv-assisted nucleation
4
growth
4
oxide
4
growth oxide
4
films chemical
4

Similar Publications