Publications by authors named "Kellie Pendoley"

Terrestrial, marine and freshwater realms are inherently linked through ecological, biogeochemical and/or physical processes. An understanding of these connections is critical to optimise management strategies and ensure the ongoing resilience of ecosystems. Artificial light at night (ALAN) is a global stressor that can profoundly affect a wide range of organisms and habitats and impact multiple realms.

View Article and Find Full Text PDF

To address a major knowledge gap for flatback sea turtles (Natator depressus), a species endemic to Australia and considered 'Data Deficient' for IUCN Red List assessment, we present the first-ever skeletochronology-derived age and growth rate estimates for this species. Using a rare collection of bone samples gathered from across northern Australia, we applied skeletochronology and characterized the length-at-age relationship, established baseline growth rates from the hatchling to adult life stages, and produced empirical estimates of age-at- and size-at-sexual-maturation (ASM, SSM). We analyzed humeri from 74 flatback sea turtles ranging in body size from 6.

View Article and Find Full Text PDF

The globally widespread adoption of Artificial Light at Night (ALAN) began in the mid-20th century. Yet, it is only in the last decade that a renewed research focus has emerged into its impacts on ecological and biological processes in the marine environment that are guided by natural intensities, moon phase, natural light and dark cycles and daily light spectra alterations. The field has diversified rapidly from one restricted to impacts on a handful of vertebrates, to one in which impacts have been quantified across a broad array of marine and coastal habitats and species.

View Article and Find Full Text PDF

We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array.

View Article and Find Full Text PDF