Publications by authors named "Kathy Overton"

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials.

View Article and Find Full Text PDF

A range of conservation and restoration tools are needed to safeguard the structure and function of aquatic ecosystems. Aquaculture, the culturing of aquatic organisms, often contributes to the numerous stressors that aquatic ecosystems face, yet some aquaculture activities can also deliver ecological benefits. We reviewed the literature on aquaculture activities that may contribute to conservation and restoration outcomes, either by enhancing the persistence or recovery of one or more target species or by moving aquatic ecosystems toward a target state.

View Article and Find Full Text PDF
Article Synopsis
  • Continued use of chemical pest control in Australian grain farming limits the success of biological control through natural predators within integrated pest management (IPM) systems.
  • There is a lack of accessible and relevant data regarding the non-target effects of these chemicals on natural enemy arthropods, and research has mainly focused on easily cultivated species rather than less-studied generalist predators like spiders and some beetles.
  • Furthermore, limited research on the impact of commonly used neonicotinoid seed treatments on natural enemies illustrates a significant knowledge gap, highlighting the need for more industry-relevant studies to support IPM adoption and reduce reliance on chemicals.
View Article and Find Full Text PDF

Since 2016, the fall armyworm (FAW), , has undergone a significant range expansion from its native range in the Americas, to continental Africa, Asia, and in February 2020, mainland Australia. The large dispersal potential of FAW adults, wide host range of immature feeding stages, and unique environmental conditions in its invasive range creates large uncertainties in the expected impact on Australian plant production industries. Here, using a spatial model of population growth and spread potential informed by existing biological and climatic data, we simulate seasonal population activity potential of FAW, with a focus on Australia's grain production regions.

View Article and Find Full Text PDF

The evolution of pesticide resistance has driven renewed interest in non-chemical pest controls in agriculture. Spatial manipulations (physical barriers and fallowing, for example) can be an effective method of prevention, but these too might impose selection and cause rapid adaptation in pests. In salmon aquaculture, various non-chemical approaches have emerged to combat parasitic salmon lice (Lepeophtheirus salmonis) - a major pest with clear signs of evolved chemical resistance.

View Article and Find Full Text PDF

The salmon aquaculture industry has adopted the use of invertivorous 'cleaner fishes' (CF) for biological control of sea louse infestations on farmed salmon. At present, ~50 million CF are used annually in Norway alone, with variable success in experimental and industrial contexts. We used a national scale database of louse counts, delousing treatments and CF stocking events on Norwegian salmon farms to test for evidence of CF efficacy at 488 sites that completed a grow-out cycle within 2016-2018.

View Article and Find Full Text PDF

Background: Hydrogen peroxide (H O ) baths are widely used to reduce numbers of salmon lice on farmed Atlantic salmon. Fish mortalities often occur after baths, with warmer temperatures increasing lethality. We tested whether mortality could be reduced and lice removal efficacy maintained by lowering bath temperatures relative to ambient temperatures.

View Article and Find Full Text PDF