Publications by authors named "James L Maino"

As climate change continues to modify temperature and rainfall patterns, risks from pests and diseases may vary as shifting temperature and moisture conditions affect the life history, activity, and distribution of invertebrates and diseases. The potential consequences of changing climate on pest management strategies must be understood for control measures to adapt to new environmental conditions. The redlegged earth mite (RLEM; Halotydeus destructor [Tucker]) is a major economic pest that attacks pastures and grain crops across southern Australia and is typically controlled by pesticides.

View Article and Find Full Text PDF

Background: Bryobia (Koch) mites belong to the economically important spider mite family, the Tetranychidae, with >130 species described worldwide. Due to taxonomic difficulties and most species being asexual, species identification relies heavily on genetic markers. Multiple putative Bryobia mite species have been identified attacking pastures and grain crops in Australia.

View Article and Find Full Text PDF

The Russian wheat aphid (Diuraphis noxia [Kurdjumov, Hemiptera: Aphididae], RWA) was first detected in Australia in 2016 and is threatening an annual cereal industry valued at nearly 10 billion AUD per annum. Considerable uncertainty surrounds the economic risk of D. noxia to Australian cereals, which limits cost-effective farm management decisions.

View Article and Find Full Text PDF

Australia is the third largest exporting country of cereals and a leader in other major commodity crops, yet little data exist on pesticide usage patterns in agriculture. This knowledge gap limits the management of off-target chemical impacts, such as the evolution of pesticide resistance. Here, for the first time, we quantify spatial patterns in neonicotinoid applications in Australia by coalescing land use data with sales and market research data contributed by agrichemical and agribusiness companies.

View Article and Find Full Text PDF

Background: Pesticide resistance has seen control options for the redlegged earth mite (RLEM), Halotydeus destructor, dwindle for Australian grain farmers. The recent discovery of high recessiveness for pyrethroid resistance in RLEM provided an opportunity to examine the feasibility of a refuge strategy to slow the evolution of resistance. Unlike lepidopterous pests in Bt crops, where refuge strategies are routinely practiced, RLEM is a slow-moving pest, which will impact the design of susceptible refuges.

View Article and Find Full Text PDF

Background: The global pest spotted winged drosophila (Drosophila suzukii) continues to have a significant economic impact on fruit production in areas where it is established, in addition to newly invaded ranges. Management activities spanning national biosecurity responses to farm-scale pest control are limited by the inability to predict the timing and severity of seasonal outbreaks of D. suzukii and its climatic drivers.

View Article and Find Full Text PDF

Since 2016, the fall armyworm (FAW), , has undergone a significant range expansion from its native range in the Americas, to continental Africa, Asia, and in February 2020, mainland Australia. The large dispersal potential of FAW adults, wide host range of immature feeding stages, and unique environmental conditions in its invasive range creates large uncertainties in the expected impact on Australian plant production industries. Here, using a spatial model of population growth and spread potential informed by existing biological and climatic data, we simulate seasonal population activity potential of FAW, with a focus on Australia's grain production regions.

View Article and Find Full Text PDF

The regulation of active and dormant stages of arthropods is critical for surviving unfavourable seasonal conditions, and for many species depends on the diapause intensity (DI). There is substantial information on diapause strategies of arthropods under winter conditions; however, most cases of summer diapause are poorly understood despite its importance in most geographic regions of the world. Here we show how complex interactions with the environment drive DI involving multiple summer diapause forms of the mite Halotydeus destructor.

View Article and Find Full Text PDF

Background: The polyphagous mite pest, Halotydeus destructor, typically has three generations during the cool moist season in Australia and produces over-summering diapause eggs in spring. Diapause eggs have a distinct thick and dark chorion and can survive heat, desiccation and the application of pesticides. Farmers suppress mites producing diapause eggs by a carefully timed spring pesticide application using Timerite , which predicts the onset of diapause egg production based largely on day length.

View Article and Find Full Text PDF

Mechanistic models of the impacts of climate change on insects can be seen as very specific hypotheses about the connections between microclimate, ecophysiology and vital rates. These models must adequately capture stage-specific responses, carry-over effects between successive stages, and the evolutionary potential of the functional traits involved in complex insect life-cycles. Here we highlight key considerations for current approaches to mechanistic modelling of insect responses to climate change.

View Article and Find Full Text PDF

Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects.

View Article and Find Full Text PDF

Design constraints imposed by increasing size cause metabolic rate in animals to increase more slowly than mass. This ubiquitous biological phenomenon is referred to as metabolic scaling. However, mechanistic explanations for interspecific metabolic scaling do not apply to ontogenetic size changes within a species, implying different mechanisms for scaling phenomena.

View Article and Find Full Text PDF

Metabolic theory specifies constraints on the metabolic organisation of individual organisms. These constraints have important implications for biological processes ranging from the scale of molecules all the way to the level of populations, communities and ecosystems, with their application to the latter emerging as the field of metabolic ecology. While ecologists continue to use individual metabolism to identify constraints in ecological processes, the topic of metabolic scaling remains controversial.

View Article and Find Full Text PDF