Toxicity of Insecticides and Miticides to Natural Enemies in Australian Grains: A Review.

Insects

Cesar Australia, 293 Royal Parade, Parkville, VIC 3052, Australia.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Continued prophylactic chemical control to reduce pest populations in Australian grain farming systems has limited the effectiveness of biological control via natural enemies in crops within an integrated pest management (IPM) framework. While a variety of data is available to infer potential non-target effects of chemicals on arthropod natural enemies, much of it may be irrelevant or difficult to access. Here, we synthesise the literature relevant to Australian grain crops and highlight current knowledge gaps for potential future investment. A range of testing methodologies have been utilised, often deviating from standardised International Organization for Biological Control (IOBC) protocols. Consistent with findings from over 30 years ago, research has continued to occur predominantly at laboratory scales and on natural enemy families that are easily reared or commercially available. There is a paucity of data for many generalist predators, in particular for spiders, hoverflies, and rove and carabid beetles. Furthermore, very few studies have tested the effects of seed treatments on natural enemies, presenting a significant gap given the widespread global use of neonicotinoid seed treatments. There is a need to validate results obtained under laboratory conditions at industry-relevant scales and also prioritise testing on several key natural enemy species we have identified, which should assist with the adoption of IPM practices and decrease the reliance on broad-spectrum chemicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927080PMC
http://dx.doi.org/10.3390/insects12020187DOI Listing

Publication Analysis

Top Keywords

natural enemies
16
australian grain
8
biological control
8
natural enemy
8
seed treatments
8
natural
6
toxicity insecticides
4
insecticides miticides
4
miticides natural
4
enemies
4

Similar Publications

Parasitoid wasps are major causes of mortality of many species, making host immune defences a common target of adaptive evolution, though such targets outside model species are poorly understood. In this study, we used two tests of positive selection to compare across three closely related Galerucella leaf beetles that show substantial differences in their phenotypic response to the shared parasitoid wasp Asecodes parviclava, their main natural enemy. Using a codon-based test, which detects excess amino acid fixations per locus along each species' lineage, we found more evidence of positive selection on parasitoid-relevant immune genes in the species with the strongest immunocompetence (G.

View Article and Find Full Text PDF

The Asiatic apple leafminer, Phyllonorycter ringoniella (Matsumura), is a significant secondary pest of apple trees in Northeast Asia. To better understand its population dynamics, a population model based on temperature-developmental relationships was constructed. This model includes three sub-models: spring emergence, immature stage transition, and adult oviposition.

View Article and Find Full Text PDF

Host-microbe synergy in pesticide resilience: Rhodococcus-driven fitness compensation in chlorpyrifos-stressed Binodoxys communis.

Pestic Biochem Physiol

November 2025

Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu

Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.

View Article and Find Full Text PDF

The toll signaling pathway confers resistance of Neoseiulus barkeri to Beauveria bassiana via cascade lysozyme expression.

Pestic Biochem Physiol

November 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing 400715, China. Electronic address:

The innovative fungus-mite collaborative control strategy based on the high resistance of predatory mites to entomopathogenic fungi offers significant advantages. However, the resistance mechanisms of predatory mites to entomopathogenic fungi remain poorly characterized. Additionally, the pathogenic and lethal risks of broad-spectrum entomopathogenic fungi to predatory mites pose constraints on their application.

View Article and Find Full Text PDF

Adaptive glutathione S-transferase genes induced by DIMBOA as potential RNAi targets against Ostrinia furnacalis.

Pestic Biochem Physiol

November 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, He

The arms race between insect-resistant secondary metabolites in plants and the detoxification genes of their natural enemies reveals the intricate co-evolutionary dynamics between the Asian corn borer (Ostrinia furnacalis) and its host plant, maize, and provides a new perspective for the potential control of pests. In this study, ELISA and transcriptome revealed that the glutathione S-transferases were involved in the detoxification of O. furnacalis to maize secondary metabolite 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA).

View Article and Find Full Text PDF