Early plant responses to different stress situations often encompass cytosolic Ca increases, plasma membrane depolarization and the generation of reactive oxygen species. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins).
View Article and Find Full Text PDFStomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations.
View Article and Find Full Text PDFNew Phytol
January 2024
γ-Aminobutyric acid (GABA) accumulates rapidly under stress via the GABA shunt pathway, which has been implicated in reducing the accumulation of stress-induced reactive oxygen species (ROS) in plants. γ-Aminobutyric acid has been demonstrated to act as a guard-cell signal in Arabidopsis thaliana, modulating stomatal opening. Knockout of the major GABA synthesis enzyme Glutamate Decarboxylase 2 (GAD2) increases the aperture of gad2 mutants, which results in greater stomatal conductance and reduces water-use efficiency compared with wild-type plants.
View Article and Find Full Text PDFChanges in cytosolic calcium (Ca2+) concentration are among the earliest reactions to a multitude of stress cues. While a plethora of Ca2+-permeable channels may generate distinct Ca2+ signatures and contribute to response specificities, the mechanisms by which Ca2+ signatures are decoded are poorly understood. Here, we developed a genetically encoded Förster resonance energy transfer (FRET)-based reporter that visualizes the conformational changes in Ca2+-dependent protein kinases (CDPKs/CPKs).
View Article and Find Full Text PDFOptogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants.
View Article and Find Full Text PDFSalt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown.
View Article and Find Full Text PDFSensing of external mineral nutrient concentrations is essential for plants to colonize environments with a large spectrum of nutrient availability. Here, we analyzed transporter networks in computational cell biology simulations to understand better the initial steps of this sensing process. The networks analyzed were capable of translating the information of changing external nutrient concentrations into cytosolic H and Ca signals, two of the most ubiquitous cellular second messengers.
View Article and Find Full Text PDFPlant Physiol
October 2021
Microbial rhodopsins have advanced optogenetics since the discovery of channelrhodopsins almost two decades ago. During this time an abundance of microbial rhodopsins has been discovered, engineered, and improved for studies in neuroscience and other animal research fields. Optogenetic applications in plant research, however, lagged largely behind.
View Article and Find Full Text PDFOptogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space.
View Article and Find Full Text PDFGuard cells control the aperture of plant stomata, which are crucial for global fluxes of CO and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (ACR1). In tobacco guard cells that express ACR1, blue- and green-light pulses elicit Cl and NO currents of -1 to -2 nA.
View Article and Find Full Text PDFPlants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function.
View Article and Find Full Text PDFMembranes (Basel)
April 2021
Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin ACR1 from the green alga . The growth of pollen tube can then be manipulated by localized green light illumination.
View Article and Find Full Text PDFWhile rhodopsin-based optogenetics has revolutionized neuroscience, poor expression of opsins and the absence of the essential cofactor all-trans-retinal has complicated the application of rhodopsins in plants. Here, we demonstrate retinal production in plants and improved rhodopsin targeting for green light manipulation of plant cells using the Guillardia theta light-gated anion channelrhodopsin GtACR1. Green light induces a massive increase in anion permeability and pronounced membrane potential changes when GtACR1 is expressed, enabling non-invasive manipulation of plant growth and leaf development.
View Article and Find Full Text PDFWhereas the role of calcium ions (Ca ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca - and pH-dynamics revealed interconnections previously not described.
View Article and Find Full Text PDFWe investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth in Arabidopsis thaliana (Col-0). Patch-clamp whole-cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca ] ). We investigated the pollen-expressed proteins AtSLAH3, AtALMT12, AtTMEM16 and AtCCC as the putative anion transporters responsible for these currents.
View Article and Find Full Text PDFPlant Signal Behav
June 2019
Plant reproduction is the basis for economically relevant food production. It relies on pollen tube (PTs) growth into the female flower organs for successful fertilization. The high cytosolic Ca concentration ([Ca]) at the PT tip is sensed by Ca-dependent protein kinases (CPKs) that in turn activate R- and S-type anion channels to control polar growth.
View Article and Find Full Text PDFThe membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging.
View Article and Find Full Text PDFPollen tubes (PTs) are characterized by having tip-focused cytosolic calcium ion (Ca ) concentration ([Ca ] ) gradients, which are believed to control PT growth. However, the mechanisms by which the apical [Ca ] orchestrates PT growth are not well understood. Here, we aimed to identify these mechanisms by combining reverse genetics, cell biology, electrophysiology, and live-cell Ca and anion imaging.
View Article and Find Full Text PDFReactive oxygen species (ROS) produced by NAD(P)H oxidases play a central role in plant stress responses and development. To better understand the function of NAD(P)H oxidases in plant development, we characterized the Arabidopsis thaliana NAD(P)H oxidases RBOHH and RBOHJ. Both proteins were specifically expressed in pollen and dynamically targeted to distinct and overlapping plasma membrane domains at the pollen tube tip.
View Article and Find Full Text PDFApical growth in pollen tubes (PTs) is associated with the presence of tip-focused ion gradients and fluxes, implying polar localization or regulation of the underlying transporters. The molecular identity and regulation of anion transporters in PTs is unknown. Here we report a negative gradient of cytosolic anion concentration focused on the tip, in negative correlation with the cytosolic Ca(2+) concentration.
View Article and Find Full Text PDFThis chapter describes the procedure for globally analyzing fluorescence lifetime imaging (FLIM) data for the observation and quantification of Förster resonance energy transfer (FRET) in live plant cells. The procedure is illustrated by means of a case study, for which plant protoplasts were transfected with different visible fluorescent proteins and subsequently imaged using two-photon excitation FLIM. Spatially resolved fluorescence lifetime images were obtained by application of global analysis using the program Glotaran, which is open-source and freely available software.
View Article and Find Full Text PDFWe review the recent advances on Ca(2+) in tip-growing cells, with a special focus on pollen tubes. New genes for Ca(2+) pumps, channels and sensing proteins have been recently described, with special emphasis on cyclic nucleotide gated channels (CNGCs) and glutamate receptor-like channels (GLRs). We also review the current state of knowledge in what concerns Ca(2+) sensor and relay proteins, where the knowledge of the cell models is less advanced.
View Article and Find Full Text PDFThe genome of Arabidopsis thaliana contains six genes, AtPMT1 to AtPMT6 (Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTER 1-6), which form a distinct subfamily within the large family of more than 50 monosaccharide transporter-like (MST-like) genes. So far, only AtPMT5 [formerly named AtPLT5 (At3g18830)] has been characterized and was shown to be a plasma membrane-localized H(+)-symporter with broad substrate specificity. The characterization of AtPMT1 (At2g16120) and AtPMT2 (At2g16130), two other, almost identical, members of this transporter subfamily, are presented here.
View Article and Find Full Text PDFThe plant membrane potential reports on the activity of electrogenic plasma membrane transport processes. The membrane potential is widely used to report for early events associated with changes in light regime, hormone action or pathogen attacks. The membrane potentials of guard cells can be precisely measured with microelectrodes, but this technique is not well suited for rapid screens with large sample numbers.
View Article and Find Full Text PDFDrought induces stomatal closure, a response that is associated with the activation of plasma membrane anion channels in guard cells, by the phytohormone abscisic acid (ABA). In several species, this response is associated with changes in the cytoplasmic free Ca(2+) concentration. In Vicia faba, however, guard cell anion channels activate in a Ca(2+)-independent manner.
View Article and Find Full Text PDF