Publications by authors named "Junzhen Xue"

Background: Carotid atherosclerotic vascular disease significantly contributes to strokes, presenting a heightened risk of early recurrent ischemia. Computational fluid dynamics (CFD) has shown potential in predicting subsequent stroke recurrence in patients with carotid stenosis.

Objective: This study aims to investigate the differences in computational time and accuracy of four key hemodynamic indices-wall shear stress (WSS), time-averaged wall shear stress (TAWSS), Oscillatory Shear Index (OSI), and relative residence time (RRT)-across different viscosity models, thereby providing optimal model selection for clinical cases and offering guidance for clinicians' decision-making.

View Article and Find Full Text PDF

Carotid atherosclerosis is a leading cause of ischemic stroke. As a result of atherosclerotic plaque formation, the carotid artery lumen narrows, leading to significant hemodynamic alterations. These changes can further contribute to the development of subsequent lesions.

View Article and Find Full Text PDF

Carotid artery stenosis (CAS) is a key factor in pathological conditions, such as thrombosis, which is closely linked to hemodynamic parameters. Existing research often focuses on analyzing the influence of geometric characteristics at the stenosis site, making it difficult to predict the effects of overall vascular geometry on hemodynamic parameters. The objective of this study is to comprehensively examine the influence of geometric morphology at different degrees of CAS and at bifurcation sites on hemodynamic parameters.

View Article and Find Full Text PDF