Publications by authors named "Junhyeong Kim"

Extracellular vesicles (EVs) derived from oviductal epithelial cells help with fertilization and embryo development. Although the effects of EVs on the developmental competence of somatic cell nuclear transfer (SCNT) embryos are known, their impact on the production efficiency of cloned pigs in surrogate mothers is unclear. We evaluated the effects of porcine oviductal fluid-derived EVs (oEVs) on the in vitro development of SCNT embryos and production efficiency in cloned pigs.

View Article and Find Full Text PDF

Nanophotonics, which explores significant light-matter interactions at the nanoscale, has facilitated significant advancements across numerous research fields. A key objective in this area is the design of ultra-compact, high-performance nanophotonic devices to pave the way for next-generation photonics. While conventional brute-force, intuition-based forward design methods have produced successful nanophotonic solutions over the past several decades, recent developments in optimization methods and artificial intelligence offer new potential to expand these capabilities.

View Article and Find Full Text PDF

To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.

View Article and Find Full Text PDF

Once light is coupled to a photonic chip, its efficient distribution in terms of power splitting throughout silicon photonic circuits is very crucial. We present two types of 1 × 4 power splitters with different splitting ratios of 1:1:1:1 and 2:1:1:2. Various taper configurations were compared and analyzed to find the suitable configuration for the power splitter, and among them, parabolic tapers were chosen.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are produced from energy metabolism and may cause diseases or cell death. Antioxidation refers to the suppression of ROS production and is considered beneficial in preventing diseases. This study aimed to examine the antioxidative effects of Makino (COM) extracts and fractions using as an experimental model.

View Article and Find Full Text PDF

In the field of molecular diagnostics, the demand for multiplex detection, aimed at reducing overall analysis costs and streamlining procedures, is on the rise, prompting ongoing developments in various technologies. In this study, we developed a novel system, the split T7 promoter-based three-way junction-transcription, coupled with Cas12a/Blocker DNA (T3-CaB), for the multiplex detection of target nucleic acids. The T3-CaB system builds upon the foundation of the T3 system, generating numerous RNA transcripts upon encountering target nucleic acids.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) can estimate tissue conductivity values using phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this method is prone to noise amplification due to the Laplacian operator's sensitivity. To address this issue, we propose a novel unsupervised preprocessing denoiser for MRI transceive phase images.

View Article and Find Full Text PDF

We proposed a 2D 1 × 64 silicon optical phased array with a backside silicon-etched structure to achieve high tuning efficiency and a wide longitudinal steering range. At the radiator array, the n-i-n heater was implemented to steer the light in a longitudinal direction through the thermo-optic effect. The deep reactive ion etching process was utilized to generate the 600 µm depth air trench with a 1.

View Article and Find Full Text PDF

Although supplementation with docosahexaenoic acid (DHA) during porcine oocyte IVM is well-established, the available data are limited due to the lack of consistency. Moreover, to our knowledge, the anti-oxidant effects of DHA on porcine oocytes have not been reported. Hence, this study aimed to examine the effects of DHA supplementation on the regulation of energy metabolism during porcine oocyte maturation to improve oocyte maturation and embryonic development.

View Article and Find Full Text PDF

Cell-free protein synthesis (CFPS) reactions can be used to detect nucleic acids. However, most CFPS systems rely on a toehold switch and exhibit the following critical limitations: (i) off-target signals due to leaky translation in the absence of target nucleic acids, (ii) a suboptimal detection limit of approximately 30 nM without pre-amplification, and (iii) labor-intensive screening processes due to sequence constraints for the target nucleic acids. To overcome these shortcomings, we developed a new split T7 switch-mediated CFPS system in which the split T7 promoter was applied to a three-way junction structure to selectively initiate transcription-translation only in the presence of target nucleic acids.

View Article and Find Full Text PDF

The reaction of Li[(TAML)Co]·3HO (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf) and Y(OTf)) or triflic acid affords a blue species , which is converted reversibly to a green species upon cooling to 193 K. The electronic structures of and have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with theoretical studies. Complex is best represented as an = 1/2 [(Sol)(TAML)Co---OH(LA)] species (LA = Lewis/Brønsted acid and Sol = solvent), where an = 1 Co(III) center is antiferromagnetically coupled to = 1/2 TAML, which represents a one-electron oxidized TAML ligand.

View Article and Find Full Text PDF
Article Synopsis
  • The newly introduced heterocumulene ligand [(Ad)NCC(Bu)] can exist in two forms: azaalleneyl and ynamide, and it allows for a reversible chemical transformation influenced by Brønsted acid-base interactions.
  • This ligand platform induces a unique change in the spin state of vanadium [V] complexes, which has not been observed before.
  • The formation of these complexes involves reactions with 1-adamantyl isonitrile that lead to different spin states, which are further analyzed through theoretical studies to understand the underlying mechanisms.
View Article and Find Full Text PDF

Synthetic oligonucleotides have become a fundamental tool in a wide range of biological fields, including synthetic biology, biosensing, and DNA storage. Reliable access to equipment for synthesizing high-density oligonucleotides in the laboratory ensures research security and the freedom of research expansion. In this study, we introduced the Open-Source Inkjet DNA Synthesizer (OpenIDS), an open-source inkjet-based microarray synthesizer that offers ease of construction, rapid deployment, and flexible scalability.

View Article and Find Full Text PDF

The purpose of this study was to compare the efficiency of the production of cloned transgenic Yucatan miniature pigs (YMPs) using two recipient breeds, i.e., YMPs and domestic pigs (DPs), under various embryo transfer conditions.

View Article and Find Full Text PDF

The development of drugs targeting the central nervous system (CNS) is challenging because of the presence of the Blood-Brain barrier (BBB). Developing physiologically relevant in vitro BBB models for evaluating drug permeability and predicting the activity of drug candidates is crucial. The transwell model is one of the most widely used in vitro BBB models.

View Article and Find Full Text PDF

The cement industry emits a significant amount of carbon dioxide (CO). Therefore, the cement industry should recycle the emitted CO. However, sequestration by carbonation in cement composites absorbs a very small amount of CO.

View Article and Find Full Text PDF

Calibrating the phase in integrated optical phased arrays (OPAs) is a crucial procedure for addressing phase errors and achieving the desired beamforming results. In this paper, we introduce a novel phase calibration methodology based on a deep neural network (DNN) architecture to enhance beamforming in integrated OPAs. Our methodology focuses on precise phase control, individually tailored to each of the 64 OPA channels, incorporating electro-optic phase shifters.

View Article and Find Full Text PDF

Background: While breast ultrasound (US) is a useful tool for diagnosing breast masses, it can entail false-positive biopsy results because of some overlapping features between benign and malignant breast masses and subjective interpretation.

Purpose: To evaluate the performance of conductivity imaging for reducing false-positive biopsy results related to breast US, as compared to diffusion-weighted imaging (DWI) and abbreviated MRI consisting of one pre- and one post-contrast T1-weighted imaging.

Study Type: Prospective.

View Article and Find Full Text PDF

Magnetic resonance electrical properties tomography (MR-EPT) is a non-invasive measurement technique that derives the electrical properties (EPs, e.g., conductivity or permittivity) of tissues in the radiofrequency range (64 MHz for 1.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play an active role in regulating different physiological events, however, endocrine control of EVs cargo contents remain poorly understood. In this study, we aimed to isolate EVs from the porcine oviductal epithelial cells (POECs) that were primed with steroid hormones including estradiol (E) and progesterone (P), mimicking the in vivo conditions of the reproductive cycle and studied their effects on in vitro produced embryonic development. For this purpose, POECs were treated either with 0 concentration (control) or two different combinations of E and P including 50 pg/mL E + 0.

View Article and Find Full Text PDF

We investigated the correlation between standardized uptake value (SUV) of F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) and conductivity parameters in breast cancer and explored the feasibility of conductivity as an imaging biomarker. Both SUV and conductivity have the potential to reflect the tumors' heterogeneous characteristics, but their correlations have not been investigated until now. Forty four women diagnosed with breast cancer who underwent breast MRI and F-FDG PET/CT at the time of diagnosis were included.

View Article and Find Full Text PDF

The signaling pathways governing acetaminophen (APAP)-induced liver injury have been extensively studied. However, little is known about the ubiquitin-modifying enzymes needed for the regulation of APAP-induced liver injury. Here, we examined whether the Pellino3 protein, which has E3 ligase activity, is needed for APAP-induced liver injury and subsequently explored its molecular mechanism.

View Article and Find Full Text PDF

Although T cell activation is known to involve the internalization of the T cell antigen receptor (TCR), much less is known regarding the release of TCRs following T cell interaction with cognate antigen-presenting cells. In this study, we examine the physiological mechanisms underlying TCR release following T cell activation. We show that T cell activation results in the shedding of TCRs in T cell microvilli, which involves a combined process of trogocytosis and enzymatic vesiculation, leading to the loss of membrane TCRs and microvilli-associated proteins and lipids.

View Article and Find Full Text PDF

Precise imaging in three-dimension (3D) is an essential technique for solid-state light detection and ranging (LiDAR). Among various solid-state LiDAR technologies, silicon (Si) optical phased array (OPA)-based LiDAR has the significant advantage of robust 3D imaging due to its high scanning speed, low power consumption, and compactness. Numerous techniques employing a Si OPA have utilized two-dimensional arrays or wavelength tuning for longitudinal scanning but the operation of those systems is restricted by additional requirements.

View Article and Find Full Text PDF

We employed the chemical potential equalization principle to demonstrate that fractional electrons are involved in the electro-inductive effect as well as the vibrational Stark effect. By the chemical potential model, we were able to deduce that the frontier molecular orbitals of immobilized molecules can provide valuable insight into these effects. To further understand and quantify these findings, we introduced fractional charge density functional theory (FC-DFT), a canonical ensemble approach for open systems.

View Article and Find Full Text PDF