Huntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding huntingtin (HTT). While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout (HTT KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2).
View Article and Find Full Text PDFHuntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding Huntingtin (HTT . While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout ( KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2).
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS.
View Article and Find Full Text PDFTranslating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification.
View Article and Find Full Text PDFUsing induced pluripotent stem cells (iPSCs) to understand the mechanisms of neurological disease holds great promise; however, there is a lack of well-curated lines from a large array of participants. Answer ALS has generated over 1,000 iPSC lines from control and amyotrophic lateral sclerosis (ALS) patients along with clinical and whole-genome sequencing data. The current report summarizes cell marker and gene expression in motor neuron cultures derived from 92 healthy control and 341 ALS participants using a 32-day differentiation protocol.
View Article and Find Full Text PDFAnswer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including fine motor activity, speech, breathing and linguistics/cognition.
View Article and Find Full Text PDFiScience
November 2021
Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in .
View Article and Find Full Text PDFZika virus (ZIKV) infection of neural progenitor cells (NPCs) is associated with neurological disorders, such as microcephaly, but a detailed molecular understanding of ZIKV-induced pathogenesis is lacking. Here we show that ZIKV infection of human cells, including NPCs, causes disruption of the nonsense-mediated mRNA decay (NMD) pathway. NMD is a cellular mRNA surveillance mechanism that is required for normal brain size in mice.
View Article and Find Full Text PDFIn Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation.
View Article and Find Full Text PDFAm J Hum Genet
September 2015
Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches.
View Article and Find Full Text PDFHuntington's disease (HD) causes severe motor dysfunction, behavioral abnormalities, cognitive impairment and death. Investigations into its molecular pathology have primarily relied on murine tissues; however, the recent discovery of induced pluripotent stem cells (iPSCs) has opened new possibilities to model neurodegenerative disease using cells derived directly from patients, and therefore may provide a human-cell-based platform for unique insights into the pathogenesis of HD. Here, we will examine the practical implementation of iPSCs to study HD, such as approaches to differentiate embryonic stem cells (ESCs) or iPSCs into medium spiny neurons, the cell type most susceptible in HD.
View Article and Find Full Text PDFDespite years of incremental progress in our understanding of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), there are still no disease-modifying therapeutics. The discrepancy between the number of lead compounds and approved drugs may partially be a result of the methods used to generate the leads and highlights the need for new technology to obtain more detailed and physiologically relevant information on cellular processes in normal and diseased states. Our high-throughput screening (HTS) system in a primary neuron model can help address this unmet need.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2010
To navigate a complex and changing environment, an animal's sensory neurons must continually adapt to persistent cues while remaining responsive to novel stimuli. Long-term exposure to an inherently attractive odor causes Caenorhabditis elegans to ignore that odor, a process termed odor adaptation. Odor adaptation is likely to begin within the sensory neuron, because it requires factors that act within these cells at the time of odor exposure.
View Article and Find Full Text PDFProlonged stimulation leads to specific and stable changes in an animal's behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known.
View Article and Find Full Text PDFBackground: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis.
View Article and Find Full Text PDF