Publications by authors named "Josefa M Alamillo"

Drought stress reduces plant growth and yield of crops. Common bean (Phaseolus vulgaris L.) establishes symbiosis with rhizobia, ensuring an adequate nitrogen supply without fertilizers.

View Article and Find Full Text PDF

Adenine metabolism is important for common bean (Phaseolus vulgaris L.) productivity since this legume uses ureides derived from the oxidation of purine nucleotides as its primary nitrogen storage molecules. Purine nucleotides are produced from de novo synthesis or through salvage pathways.

View Article and Find Full Text PDF

Common bean (Phaseolus vulgaris L.), one of the most important legume crops, uses atmospheric nitrogen through symbiosis with soil rhizobia, reducing the need for nitrogen fertilization. However, this legume is particularly sensitive to drought conditions, prevalent in arid regions where this crop is cultured.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) gene editing has become a powerful tool in genome manipulation for crop improvement. Advances in omics technologies, including genomics, transcriptomics, and metabolomics, allow the identification of causal genes that can be used to improve crops. However, the functional validation of these genetic components remains a challenge due to the lack of efficient protocols for crop engineering.

View Article and Find Full Text PDF

Drought is probably the most harmful stress affecting common bean crops. Domestication, worldwide spread and local farming practices has entailed the development of a wide variety of common bean genotypes with different degrees of resistance to water stress. In this work, physiological and molecular responses to water stress have been compared in two common bean accessions, PHA-0683 and PMB-0220, previously identified as highly and moderately resistant to water stress, respectively.

View Article and Find Full Text PDF

Drought is one of the most critical factors limiting legume crop productivity. Understanding the molecular mechanisms of drought tolerance in the common bean is required to improve the yields of this important crop under adverse conditions. In this work, RNA-seq analysis was performed to compare the transcriptome profiles of drought-stressed and well-irrigated plants of a previously characterized drought-tolerant common bean landrace.

View Article and Find Full Text PDF

Xanthine dehydrogenase (XDH) is essential for the assimilation of symbiotically fixed nitrogen in ureidic legumes. Uric acid, produced in the reaction catalyzed by XDH, is the precursor of the ureides, allantoin and allantoate, which are the main N-transporting molecules in these plants. XDH and uric acid have been reported to be involved in the response to stress, both in plants and animals.

View Article and Find Full Text PDF

Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis.

View Article and Find Full Text PDF

Allantoate degradation is an essential step for recycling purine-ring nitrogen in all plants, but especially in tropical legumes where the ureides allantoate and allantoin are the main compounds used to store and transport the nitrogen fixed in nodules. Two enzymes, allantoate amidohydrolase (AAH) and allantoate amidinohydrolase (allantoicase), could catalyze allantoate breakdown, although only AAH-coding sequences have been found in plant genomes, whereas allantoicase-related sequences are restricted to animals and some microorganisms. A cDNA for AAH was cloned from Phaseolus vulgaris leaves.

View Article and Find Full Text PDF

Drought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived.

View Article and Find Full Text PDF

The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase.

View Article and Find Full Text PDF

Background: Plant genomes have been transformed with full-length cDNA copies of viral genomes, giving rise to what has been called 'amplicon' systems, trying to combine the genetic stability of transgenic plants with the elevated replication rate of plant viruses. However, amplicons' performance has been very variable regardless of the virus on which they are based. This has boosted further interest in understanding the underlying mechanisms that cause this behavior differences, and in developing strategies to control amplicon expression.

View Article and Find Full Text PDF

Under water deficit, ureidic legumes accumulate ureides in plant tissues, and this accumulation has been correlated with the inhibition of nitrogen fixation. In this work we used a molecular approach to characterize ureide accumulation under drought stress in Phaseolus vulgaris. Accumulation of ureides, mainly allantoate, was found in roots, shoots and leaves, but only a limited transient increase was observed in nodules from drought-stressed plants.

View Article and Find Full Text PDF

To investigate the potential of antibody derivatives to provide passive protection against enteric infections when supplied orally in crude plant extracts, we have expressed a small immune protein (SIP) in plants using two different plant virus vectors based on potato virus X (PVX) and cowpea mosaic virus (CPMV). The epsilonSIP molecule consisted of a single-chain antibody (scFv) specific for the porcine coronavirus transmissible gastroenteritis virus (TGEV) linked to the epsilon-CH4 domain from human immunoglobulin E (IgE). In some constructs, the sequence encoding the epsilonSIP molecule was flanked by the leader peptide from the original murine antibody at its N-terminus and an endoplasmic reticulum retention signal (HDEL) at its C-terminus to allow the expressed protein to be directed to, and retained within, the endoplasmic reticulum.

View Article and Find Full Text PDF

Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA).

View Article and Find Full Text PDF

To extend the potential of antibodies and their derivatives to provide passive protection against enteric infections when supplied orally in crude plant extracts, we have expressed both a small immune protein (SIP) and a full-length antibody in plants using two different plant virus vectors based on potato virus X (PVX) and cowpea mosaic virus (CPMV). The alphaSIP molecule consisted of a single chain antibody (scFv) specific for the porcine coronavirus, transmissible gastroenteritis virus (TGEV) linked to the alpha-CH3 domain from human IgA. To express the full-length IgA, the individual light and heavy chains from the TGEV-specific mAb 6A.

View Article and Find Full Text PDF