98%
921
2 minutes
20
Drought is probably the most harmful stress affecting common bean crops. Domestication, worldwide spread and local farming practices has entailed the development of a wide variety of common bean genotypes with different degrees of resistance to water stress. In this work, physiological and molecular responses to water stress have been compared in two common bean accessions, PHA-0683 and PMB-0220, previously identified as highly and moderately resistant to water stress, respectively. Our hypothesis was that only quantitative differences in the expression patterns of key genes should be found if molecular mechanisms regulating drought resistance are similar in the two accessions. However, results presented here indicate that the resistance to drought in PMB-0220 and PHA-0683 common bean accessions is regulated by different molecular mechanisms. Differential regulation of ABA synthesis and ABA signaling related genes among the two genotypes, and the control of the drought-induced senescence have a relevant contribution to the higher resistance level of PHA-0683 accession. Our results also suggest that expression patterns of key senescence-related transcription factors could be considered in the screening for drought resistance in common bean germplasm collections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768404 | PMC |
http://dx.doi.org/10.3390/plants9121815 | DOI Listing |
Plant Foods Hum Nutr
September 2025
Cape Horn International Center (CHIC), O'Higgins 310, Puerto Williams, 6350000, Chile.
Tofu from six different landraces of chilean common beans (Araucano, Cimarrón, Magnum, Peumo, Sapito, and Tortola) was prepared and analyzed for proximate and lipid composition, antioxidant capacity, and phenolic content. Tofu has higher protein and lipid content, lower carbohydrate and phenolic content, and shows antioxidant capacity. The highest total protein was found for tofu prepared from Cimarrón and Sapito beans.
View Article and Find Full Text PDFFront Plant Sci
August 2025
London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
Many market classes of common beans () have a significant reduction in crop value due to the postharvest darkening of the seed coat. Seed coat darkening is caused by an elevated accumulation and oxidation of proanthocyanidins (PAs). In common bean, the major color gene encodes for a bHLH protein with its allele controlling the postharvest slow darkening seed coat trait.
View Article and Find Full Text PDFBreed Sci
April 2025
Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 099-2493, Japan.
Japanese red or white common bean ( L.) cultivars, used to make sweetened boiled beans, are called "kintoki" beans. Kintoki beans are planted to precede winter wheat for crop rotation in Hokkaido, northern Japan.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
Background: One of the most widely consumed legumes worldwide is the common bean. Abiotic stress factors such as heat stress significantly reduce crop productivity, and climate change models predict rising temperatures in many agricultural regions. In the 2021 and 2022 seasons, two field trials were conducted in the Wadi El Natrun Region, El-Behera Governorate, Egypt.
View Article and Find Full Text PDFInsects
July 2025
Department of Ecology and Evolution, UC Irvine, Irvine, CA 92697, USA.
The common bed bug, L., is a pervasive pest of humans throughout the world. Insecticide resistance, cryptic habits, and proclivity for harborage on human belongings have contributed to its global status as a difficult pest to control.
View Article and Find Full Text PDF