Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Immune checkpoint inhibitors (ICI) can achieve remarkable responses in urothelial cancer (UC), which may depend on tumor microenvironment (TME) characteristics. However, the relationship between the TME, usually characterized by immune cell density, and response to ICI is unclear. Here, we quantify the TME immune cell densities and spatial relationships (SRs) of 24 baseline UC samples, obtained before pre-operative combination ICI treatment, using multiplex immunofluorescence.
View Article and Find Full Text PDFCD4 T cells can "help" or "license" conventional type 1 dendritic cells (cDC1s) to induce CD8 cytotoxic T lymphocyte (CTL) anticancer responses, as proven in mouse models. We recently identified cDC1s with a transcriptomic imprint of CD4 T-cell help, specifically in T-cell-infiltrated human cancers, and these cells were associated with a good prognosis and response to PD-1-targeting immunotherapy. Here, we delineate the mechanism of cDC1 licensing by CD4 T cells in humans.
View Article and Find Full Text PDFHead and neck squamous-cell carcinoma (HNSCC) is a disease with a generally poor prognosis; half of treated patients eventually develop recurrent and/or metastatic (R/M) disease. Patients with R/M HNSCC generally have incurable disease with a median survival of 10 to 15 months. Although immune-checkpoint blockade (ICB) has improved outcomes in patients with R/M HNSCC, identifying patients who are likely to benefit from ICB remains a challenge.
View Article and Find Full Text PDFUnlabelled: To dissect the effect of neoadjuvant PD-1 and CTLA4 blockade on intratumoral T cells in treatment-naive head and neck squamous cell carcinoma, we analyzed primary tumor immune infiltrates from responding and nonresponding patients. At baseline, a higher ratio between active (4-1BB/OX40+) and inactive regulatory CD4+ T cells was associated with immunotherapy response. Furthermore, upon therapy, this active regulatory T-cell (Treg) population showed a profound decrease in responding patients.
View Article and Find Full Text PDFBy comparing indolent/slowly progressing with aggressive/rapidly progressing tumor types, Pandey et al. identify human evidence of immune equilibrium in indolent tumors and immune escape in progressing tumors, suggesting a link between these mechanisms and the epidemiologic phenomenon of overdiagnosis.
View Article and Find Full Text PDFBackground: Neoadjuvant immune checkpoint blockade (ICB) prior to surgery may induce early pathological responses in head and neck squamous cell carcinoma (HNSCC) patients. Routine imaging parameters fail to diagnose these responses early on. Magnetic resonance (MR) diffusion-weighted imaging (DWI) has proven to be useful for detecting HNSCC tumor mass after (chemo)radiation therapy.
View Article and Find Full Text PDFPurpose: To investigate the utility of [F]FDG-PET as an imaging biomarker for pathological response early upon neoadjuvant immune checkpoint blockade (ICB) in patients with head and neck squamous cell carcinoma (HNSCC) before surgery.
Methods: In the IMCISION trial (NCT03003637), 32 patients with stage II‒IVb HNSCC were treated with neoadjuvant nivolumab with (n = 26) or without (n = 6) ipilimumab (weeks 1 and 3) before surgery (week 5). [F]FDG-PET/CT scans were acquired at baseline and shortly before surgery in 21 patients.
Surgery for locoregionally advanced head and neck squamous cell carcinoma (HNSCC) results in 30‒50% five-year overall survival. In IMCISION (NCT03003637), a non-randomized phase Ib/IIa trial, 32 HNSCC patients are treated with 2 doses (in weeks 1 and 3) of immune checkpoint blockade (ICB) using nivolumab (NIVO MONO, n = 6, phase Ib arm A) or nivolumab plus a single dose of ipilimumab (COMBO, n = 26, 6 in phase Ib arm B, and 20 in phase IIa) prior to surgery. Primary endpoints are feasibility to resect no later than week 6 (phase Ib) and primary tumor pathological response (phase IIa).
View Article and Find Full Text PDF