DNA polymerase (pol) η is vital for accurately replicating DNA opposite ultraviolet light (UV)-induced cyclobutane pyrimidine dimers and cisplatin-induced intrastrand purine crosslinks. While human POLH deficiency is linked to the disease xeroderma pigmentosum variant, the functional consequences of germline and somatic POLH variants remain largely unexplored. We characterized nine nonsynonymous POLH germline variants, five of which have also been found in various tumors.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of dopaminergic neurons. Recent studies suggested the association of zinc finger protein 184 (ZNF184) with PD. However, the functional role of ZNF184 in PD pathogenesis remains unclear.
View Article and Find Full Text PDFMol Neurodegener
February 2025
Background: The parkin-interacting substrate (PARIS, also known as ZNF746) is a transcriptional repressor, whose accumulation and phosphorylation play central pathological roles in Parkinson's disease (PD). PARIS-induced transcriptional repression of PGC-1α or MDM4 contributes to mitochondrial dysfunction and p53-dependent neuron loss in PD. Despite the important role of PARIS in PD pathogenesis, unbiased transcriptomic profiles influenced by PARIS accumulation in dopaminergic neurons remain unexplored.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.
View Article and Find Full Text PDFEMBO Rep
November 2023
ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis. Reduced PGC-1α abundance is linked to skeletal muscle weakness in aging or pathological conditions, such as neurodegenerative diseases and diabetes; thus, elevating PGC-1α abundance might be a promising strategy to treat muscle aging. Here, we performed high-throughput screening and identified a natural compound, farnesol, as a potent inducer of PGC-1α.
View Article and Find Full Text PDFDNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced - cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays.
View Article and Find Full Text PDFNeuronal accumulation of parkin-interacting substrate (PARIS), a transcriptional repressor of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), has been observed in Parkinson's disease (PD). Herein, we showed that PARIS can be S-nitrosylated at cysteine 265 (C265), and S-nitrosylated PARIS (SNO-PARIS) translocates to the insoluble fraction, leading to the sequestration of PGC-1α into insoluble deposits. The mislocalization of PGC-1α in the insoluble fraction was observed in S-nitrosocysteine-treated PARIS knockout (KO) cells overexpressing PARIS WT but not S-nitrosylation deficient C265S mutant, indicating that insolubility of PGC-1α is SNO-PARIS-dependent.
View Article and Find Full Text PDFAlthough Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age.
View Article and Find Full Text PDFAberrant activation of the non-receptor kinase c-Abl is implicated in the development of pathogenic hallmarks of Parkinson's disease, such as α-synuclein aggregation and progressive neuronal loss. c-Abl-mediated phosphorylation and inhibition of parkin ligase function lead to accumulation of parkin interacting substrate (PARIS) that mediates α-synuclein pathology-initiated dopaminergic neurodegeneration. Here we show that, in addition to PARIS accumulation, c-Abl phosphorylation of PARIS is required for PARIS-induced cytotoxicity.
View Article and Find Full Text PDFSci Transl Med
July 2021
Accumulation of the parkin-interacting substrate (PARIS; ), due to inactivation of parkin, contributes to Parkinson's disease (PD) through repression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α; ) activity. Here, we identify farnesol as an inhibitor of PARIS. Farnesol promoted the farnesylation of PARIS, preventing its repression of PGC-1α via decreasing PARIS occupancy on the promoter.
View Article and Find Full Text PDFInt J Mol Sci
May 2021
α-Synuclein (α-syn) is a hallmark amyloidogenic protein component of Lewy bodies in dopaminergic neurons affected by Parkinson's disease (PD). Despite the multi-faceted gene regulation of α-syn in the nucleus, the mechanism underlying α-syn crosstalk in chromatin remodeling in PD pathogenesis remains elusive. Here, we identified transcriptional adapter 2-alpha (TADA2a) as a novel binding partner of α-syn using the BioID system.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2021
Hepatocellular carcinoma (HCC) is the most common primary liver cancer to cause liver cancer related deaths worldwide. Zinc finger protein 746 (ZNF746), initially identified as a Parkin-interacting substrate (PARIS), acts as a transcriptional repressor of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in Parkinson's disease. As recent studies reported that PARIS is associated with cancer onset, we investigated whether PARIS is associated with HCC.
View Article and Find Full Text PDFWe aimed to characterize the salivary protein components and identify biomarkers in patients with systemic lupus erythematosus (SLE). A proteomic analysis using two-dimensional gel electrophoresis and mass spectrometry was performed to determine the alterations of salivary proteins between patients with SLE and healthy controls, and the concentrations of the candidate proteins were measured through Western blot analysis and the enzyme-linked immunosorbent assay. The 10 differentially expressed protein spots were immunoglobulin gamma-3 chain C region (IGHG3), immunoglobulin alpha-1 chain C region, protein S100A8, lactoferrin, leukemia-associated protein 7, and 8-oxoguanine DNA glycosylase.
View Article and Find Full Text PDFSci Transl Med
November 2020
Lewy bodies are pathological protein inclusions present in the brain of patients with Parkinson's disease (PD). These inclusions consist mainly of α-synuclein with associated proteins, such as parkin and its substrate aminoacyl transfer RNA synthetase complex-interacting multifunctional protein-2 (AIMP2). Although AIMP2 has been suggested to be toxic to dopamine neurons, its roles in α-synuclein aggregation and PD pathogenesis are largely unknown.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood.
View Article and Find Full Text PDFJ Clin Med
December 2019
The inactivation of parkin by mutation or post-translational modification contributes to dopaminergic neuronal death in Parkinson's disease (PD). The substrates of parkin, FBP1 and AIMP2, are accumulated in the postmortem brains of PD patients, and it was recently suggested that these parkin substrates transcriptionally activate deubiquitinase . Herein, we newly identified 160 kDa myb-binding protein (MYBBP1A) as a novel substrate of USP29.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
ErbB3-binding protein 1 (EBP1) is implicated in diverse cellular functions, including apoptosis, cell proliferation, and differentiation. Here, by generating genetic inactivation of mice, we identified the physiological roles of EBP1 in vivo. Loss of in mice caused aberrant organogenesis, including brain malformation, and death between E13.
View Article and Find Full Text PDFThis study aimed to investigate the role of transglutaminase 2 (TG2) expressed in mast cells in substantia nigra (SN) in Parkinson's disease (PD) model or human PD patients. C57BL/6 mice received 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by ip injection to induce PD. Bone marrow-derived mast cells (BMMCs) were adoptively transferred to TG2 knockout (KO or TG2) mice by iv injection 1 day before MPTP injection or stimulated by 1 methyl-4-phenylpyridinium (MMP).
View Article and Find Full Text PDFMol Neurodegener
February 2018
Background: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease (PD). Elevated kinase activity is associated with LRRK2 toxicity, but the substrates that mediate neurodegeneration remain poorly defined. Given the increasing evidence suggesting a role of LRRK2 in membrane and vesicle trafficking, here we systemically screened Rab GTPases, core regulators of vesicular dynamics, as potential substrates of LRRK2 and investigated the functional consequence of such phosphorylation in cells and in vivo.
View Article and Find Full Text PDFRNF146 is an E3 ubiquitin ligase that specifically recognizes and polyubiquitinates poly (ADP-ribose) (PAR)-conjugated substrates for proteasomal degradation. RNF146 has been shown to be neuroprotective against PAR polymerase-1 (PARP1)-induced cell death during stroke. Here we report that RNF146 expression and RNF146 inducers can prevent cell death elicited by Parkinson's disease (PD)-associated and PARP1-activating stimuli.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2018
Our previous study found that PARIS (ZNF746) transcriptionally suppressed transketolase (TKT), a key enzyme in pentose phosphate pathway (PPP) in the substantia nigra (SN) of AAV-PARIS injected mice. In this study, we revealed that PARIS overexpression reprogrammed glucose metabolic pathway, leading to the increment of glycolytic proteins along with TKT reduction in the SN of AAV-PARIS injected mice. Knock-down of TKT in differentiated SH-SY5Y cells led to an increase of glycolytic enzymes and decrease of PPP-related enzymes whereas overexpression of TKT restored PARIS-mediated glucose metabolic shift, suggesting that glucose metabolic alteration by PARIS is TKT-dependent.
View Article and Find Full Text PDFInt J Mol Sci
October 2017
Aging is considered the major risk factor for neurodegenerative diseases including Parkinson's disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2017
Recently, PARIS (ZNF746) is introduced as authentic substrate of parkin and transcriptionally represses PGC-1α by binding to insulin responsive sequences (IRSs) in the promoter of PGC-1α. The overexpression of PARIS selectively leads to the loss of dopaminergic neurons (DN) and mitochondrial abnormalities in the substantia nigra (SN) of Parkinson's disease (PD) models. To identify PARIS target molecules altered in SN region-specific manner, LC-MS/MS-based quantitative proteomic analysis is employed to investigate proteomic alteration in the cortex, striatum, and SN of AAV-PARIS injected mice.
View Article and Find Full Text PDFParasit Vectors
September 2017