Publications by authors named "Jonathon Klein"

Pooled CRISPR screens are vital in the unbiased interrogation of gene function and are instrumental in uncovering therapeutic targets and biological processes. However, follow-up hit validation is critical to confirm observed results. Researchers need a simple and robust approach to rapidly verify putative hits and test resulting observations.

View Article and Find Full Text PDF

GATA2 deficiency is an autosomal dominant germline disorder of immune dysfunction and bone marrow failure with a high propensity for leukemic transformation. While sequencing studies have identified several secondary mutations thought to contribute to malignancy, the mechanisms of disease progression have been difficult to identify due to a lack of disease-specific experimental models. Here, we describe a murine model of one of the most common GATA2 mutations associated with leukemic progression in GATA2 deficiency, Gata2.

View Article and Find Full Text PDF
Article Synopsis
  • * Using CMGC inhibitors to affect RBM39 results in decreased protein levels and reduced ALL growth, especially in difficult-to-treat cases.
  • * The research shows that altering the interaction between RNA polymerase II and splicing factors due to kinase inhibition can promote the inclusion of the poison exon, revealing new avenues for effective treatment against relapsed B-ALL.
View Article and Find Full Text PDF

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines.

View Article and Find Full Text PDF

Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear.

View Article and Find Full Text PDF

Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients.

View Article and Find Full Text PDF
Article Synopsis
  • Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by the deletion of about 27 genes, leading to cognitive deficits but enhanced musical and auditory abilities.
  • Mouse models of WBS show improved frequency discrimination in their auditory cortex due to hyperexcitable interneurons.
  • The gene Gtf2ird1 is linked to WBS effects by regulating the neuropeptide receptor VIPR1, which influences auditory processing, suggesting a specific genetic mechanism behind enhanced auditory skills in individuals with WBS.
View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice.

View Article and Find Full Text PDF

Spatiotemporal control of Wnt/β-catenin signaling is critical for organism development and homeostasis. The poly-(ADP)-ribose polymerase Tankyrase (TNKS1) promotes Wnt/β-catenin signaling through PARylation-mediated degradation of AXIN1, a component of the β-catenin destruction complex. Although Wnt/β-catenin is a niche-restricted signaling program, tissue-specific factors that regulate TNKS1 are not known.

View Article and Find Full Text PDF

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP.

View Article and Find Full Text PDF

Ensuring robust gamete production even in the face of environmental stress is of utmost importance for species survival, especially in mammals that have low reproductive rates. Here, we describe a family of genes called melanoma antigens (MAGEs) that evolved in eutherian mammals and are normally restricted to expression in the testis (http://MAGE.stjude.

View Article and Find Full Text PDF

Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs.

View Article and Find Full Text PDF

Research is uncovering the genetic and biochemical effects of consuming large quantities of alcohol. One prime example is the J- or U-shaped relationship between the levels of alcohol consumption and the risk of atherosclerotic cardiovascular disease. Moderate alcohol consumption in humans (about 30 g ethanol/d) is associated with reduced risk of coronary heart disease, while abstinence and heavier alcohol intake is linked to increased risk.

View Article and Find Full Text PDF

We present a facile, simple method to detect DNA methylation by measuring the transverse proton relaxation behaviour. Positively charged nanoparticles are arranged along the negatively charged backbone of DNA strands through electrostatic interactions. The arrangement of NPs along DNA strands aids to amplify and compare the transverse proton relaxation signal for un-cut versus cut DNA strands cleaved by sequence specific restriction enzymes.

View Article and Find Full Text PDF