Publications by authors named "Jonathan M O Rawson"

During retrovirus assembly, Gag packages unspliced viral RNA as the virion genome. Genome packaging is usually specific with occasional exceptions of cross-packaging RNA from distantly related retroviruses. For example, HIV-1 Gag can efficiently package HIV-2 RNA.

View Article and Find Full Text PDF

Background: PAXLOVID consists of nirmatrelvir, an inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), copackaged with ritonavir, a pharmacokinetic enhancer. Nirmatrelvir/ritonavir received emergency use authorization in the United States in 2021 and was approved in 2023. However, there is limited published information on SARS-CoV-2 clinical resistance to nirmatrelvir/ritonavir.

View Article and Find Full Text PDF

Rebound of SARS-CoV-2 shedding or COVID-19 signs and symptoms has been described after treatment with nirmatrelvir/ritonavir (Paxlovid). The direct association of nirmatrelvir/ritonavir to COVID-19 rebound remains unclear because most reports are based on individual cases or nonrandomized studies. Viral RNA shedding data from two phase 2/3, randomized, double-blind, placebo-controlled clinical trials of nirmatrelvir/ritonavir (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients [EPIC-HR] and Evaluation of Protease Inhibition for COVID-19 in Standard-Risk Patients [EPIC-SR]) were analyzed to investigate the role of nirmatrelvir/ritonavir treatment in COVID-19 rebound.

View Article and Find Full Text PDF

HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection.

View Article and Find Full Text PDF

Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents.

View Article and Find Full Text PDF

Frequent recombination is a hallmark of retrovirus replication. In rare cases, recombination occurs between distantly related retroviruses, generating novel viruses that may significantly impact viral evolution and public health. These recombinants may initially have substantial replication defects due to impaired interactions between proteins and/or nucleic acids from the two parental viruses.

View Article and Find Full Text PDF

HIV-1 must package its RNA genome to generate infectious viruses. Recent studies have revealed that during genome packaging, HIV-1 not only excludes cellular mRNAs, but also distinguishes among full-length viral RNAs. Using NL4-3 and MAL molecular clones, multiple transcription start sites (TSS) were identified, which generate full-length RNAs that differ by only a few nucleotides at the 5' end.

View Article and Find Full Text PDF

To generate infectious virus, HIV-1 must package two copies of its full-length RNA into particles. HIV-1 transcription initiates from multiple, neighboring sites, generating RNA species that only differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. Strikingly, 1G RNA is preferentially packaged into virions over 3G RNA.

View Article and Find Full Text PDF

The 3C-like protease (3CL) of SARS-CoV-2 is considered an excellent target for COVID-19 antiviral drug development because it is essential for viral replication and has a cleavage specificity distinct from human proteases. However, drug development for 3CL has been hindered by a lack of cell-based reporter assays that can be performed in a BSL-2 setting. Current efforts to identify 3CL inhibitors largely rely upon in vitro screening, which fails to account for cell permeability and cytotoxicity of compounds, or assays involving replication-competent virus, which must be performed in a BSL-3 facility.

View Article and Find Full Text PDF

The viral protein Gag selects full-length HIV-1 RNA from a large pool of mRNAs as virion genome during virus assembly. Currently, the precise mechanism that mediates the genome selection is not understood. Previous studies have identified several sites in the 5' untranslated region (5' UTR) of HIV-1 RNA that are bound by nucleocapsid (NC) protein, which is derived from Gag during virus maturation.

View Article and Find Full Text PDF

HIV-1 capsid core disassembly (uncoating) must occur before integration of viral genomic DNA into the host chromosomes, yet remarkably, the timing and cellular location of uncoating is unknown. Previous studies have proposed that intact viral cores are too large to fit through nuclear pores and uncoating occurs in the cytoplasm in coordination with reverse transcription or at the nuclear envelope during nuclear import. The capsid protein (CA) content of the infectious viral cores is not well defined because methods for directly labeling and quantifying the CA in viral cores have been unavailable.

View Article and Find Full Text PDF

Retroviruses package two complete RNA genomes into a viral particle but generate only one provirus after each infection. This pseudodiploid replication strategy facilitates frequent recombination, which occurs during DNA synthesis when reverse transcriptase switches templates between two copackaged RNA genomes, generating chimeric DNA. Recombination has played an important role in shaping the current HIV-1 pandemic; however, whether recombination is required for HIV-1 replication is currently unknown.

View Article and Find Full Text PDF

A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.

View Article and Find Full Text PDF

Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1.

View Article and Find Full Text PDF

5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2'-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC.

View Article and Find Full Text PDF

The high mutation rate of human immunodeficiency virus type-1 (HIV-1) has been a pivotal factor in its evolutionary success as a human pathogen, driving the emergence of drug resistance, immune system escape, and invasion of distinct anatomical compartments. Extensive research has focused on understanding how various cellular and viral factors alter the rates and types of mutations produced during viral replication. Here, we describe a single-cycle dual-reporter vector assay that relies upon the detection of mutations that eliminate either expression of mCherry or enhanced green fluorescent protein (EGFP).

View Article and Find Full Text PDF

Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically.

Results: To address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.

View Article and Find Full Text PDF

Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses.

View Article and Find Full Text PDF