Publications by authors named "Jonathan Degosserie"

Conjugative plasmids are the main drivers of antibiotic resistance dissemination contributing to the emergence and extensive spread of multidrug resistance clinical bacterial pathogens. pOXA-48 plasmids, belonging to the IncL group, emerge as the primary vehicle for carbapenem resistance in Enterobacteriaceae. Despite the problematic prevalence of pOXA-48, most research focus on epidemiology and genomics, leaving gaps in our understanding of the mechanisms behind its propagation.

View Article and Find Full Text PDF

Introduction: Lymph nodes are essential to diagnose lymphoid neoplasms, metastases, and infections. Some lymphomas, particularly aggressive non-Hodgkin lymphomas (NHL), need urgent diagnosis. Combining lymph node cytology (LNC) and flow cytometry (FC) with other rapidly available parameters through multivariable predictive models could offer valuable diagnostic information while waiting for anatomopathological results.

View Article and Find Full Text PDF

Background: The use of laboratory resources has seen a substantial increase in recent years, driven by automation and emerging technologies. However, inappropriate use of laboratory testing, encompassing both overuse and underuse, poses significant challenges.

Content: This review explores the complex interplay between patient safety, economic, and environmental factors-known as the "triple bottom line" or "3Ps" for people, profit, and planet-associated with inappropriate use of laboratory resources.

View Article and Find Full Text PDF

Since the onset of the coronavirus disease (COVID-19) pandemic in Belgium, UZ/KU Leuven has played a crucial role as the National Reference Centre (NRC) for respiratory pathogens, to be the first Belgian laboratory to develop and implement laboratory developed diagnostic assays for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and later to assess the quality of commercial kits. To meet the growing demand for decentralised testing, both clinical laboratories and government-supported high-throughput platforms were gradually deployed across Belgium. Consequently, the role of the NRC transitioned from a specialised testing laboratory to strengthening capacity and coordinating quality assurance.

View Article and Find Full Text PDF

Rapid and recurrent breakthroughs of new SARS-CoV-2 strains (variants) have prompted public health authorities worldwide to set up surveillance networks to monitor the circulation of variants of concern. The use of next-generation sequencing technologies has raised the need for quality control assessment as required in clinical laboratories. The present study is the first to propose a validation guide for SARS-CoV-2 typing using three different NGS methods fulfilling ISO15189 standards.

View Article and Find Full Text PDF

An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications.

View Article and Find Full Text PDF

Extracellular vesicles are spherical subcellular structures delimited by a lipid bilayer and released by most cells in the human body. They are loaded with a myriad of molecules (i.e.

View Article and Find Full Text PDF

From early 2020, a high demand for SARS-CoV-2 tests was driven by several testing indications, including asymptomatic cases, resulting in the massive roll-out of PCR assays to combat the pandemic. Considering the dynamic of viral shedding during the course of infection, the demand to report cycle threshold (Ct) values rapidly emerged. As Ct values can be affected by a number of factors, we considered that harmonization of semi-quantitative PCR results across laboratories would avoid potential divergent interpretations, particularly in the absence of clinical or serological information.

View Article and Find Full Text PDF

Rapid antigen detection (RAD) tests are commonly used for the diagnosis of SARS-CoV-2 infections. However, with the continuous emergence of new variants of concern (VOC), presenting various mutations potentially affecting the nucleocapsid protein, the analytical performances of these assays should be frequently reevaluated. One hundred and twenty samples were selected and tested with both RT-qPCR and six commercial RAD tests that are commonly sold in Belgian pharmacies.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression.

View Article and Find Full Text PDF

Endothelial cells play multiple roles during pancreas organogenesis. First, they are required to instruct endoderm-derived pancreatic progenitor cells to initiate branching morphogenesis. Later, blood vessels promote β-cell differentiation but also limit acinar development.

View Article and Find Full Text PDF

Organogenesis is a complex and dynamic process requiring reciprocal communication between different cell types. In the thyroid, thyrocyte progenitors secrete the angiocrine factor, VEGFA, to recruit endothelial cells. In return, endothelial cells promote thyrocyte organisation into spherical follicular structures, which are responsible for thyroid hormone synthesis and storage.

View Article and Find Full Text PDF

Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept.

View Article and Find Full Text PDF