Publications by authors named "Jing-Ning Zhu"

Ultrasound localization microscopy (ULM) is a novel imaging technique that overcomes the diffraction limit to achieve super-resolution imaging at the 10-μm scale. Despite its remarkable progress, challenges persist in enhancing the precision of microbubble tracking and fulfilling the requirements for high frame rates in practical circumstances, especially in moving organs. To address these issues, an enhanced ULM approach (shorten as vc-Kalman) integrating rapid motion compensation was developed to achieve excellent image quality.

View Article and Find Full Text PDF

Neuronal hyperexcitability is a common pathophysiological feature of many neurological diseases. Neuron-glia interactions underlie this process but the detailed mechanisms remain unclear. Here, we reveal a critical role of microglia-mediated selective elimination of inhibitory synapses in driving neuronal hyperexcitability.

View Article and Find Full Text PDF

Estrogen fluctuations have been implicated in various mood disorders, including perimenopausal and postpartum depression (PPD), likely through complex neural networks. γ-aminobutyric acid-ergic (GABAergic) neurons in the medial preoptic area (MPOA) that express estrogen receptor 1 (ESR1) are essential for the development and expression of depressive-like behaviors in ovarian hormone withdrawal (HW) mice. However, the precise circuit mechanisms through which MPOA GABAergic neurons influence behavior remain incompletely understood.

View Article and Find Full Text PDF

Vestibular compensation, the spontaneous recovery from vestibular dysfunction following unilateral vestibular loss, serves as a valuable model for investigating post-lesion plasticity in the adult central nervous system. Elucidating the mechanisms underlying vestibular compensation also offers promising therapeutic avenues for treating vestibular disorders. While most studies have focused on the dynamics of GABAergic synaptic plasticity and intrinsic cellular adaptations in the ipsilesional medial vestibular nucleus (MVN) after unilateral labyrinthectomy (UL), the role of glutamatergic synaptic plasticity in this process remains largely unexplored.

View Article and Find Full Text PDF

Accumulating evidence has identified disrupted oxytocin signaling in both autistic patients and animal models of autism. Nevertheless, the specific timing of the impact of oxytocin on social behavior has remained unclear. Using mouse strains from oxytocin-Cre mice crossed with Cre-dependent chemogenetic mice, oxytocinergic neuronal activity is selectivity manipulated during the early or late postnatal stages and revealed, for the first time, that the suppression of oxytocinergic neurons in the early rather than late postnatal stage led to the emergence of autistic-like behaviors.

View Article and Find Full Text PDF

The ventral anterior (VA) nucleus of the thalamus is a major target of the basal ganglia and is closely associated with the pathogenesis of Parkinson's disease (PD). Notably, the VA receives direct innervation from the hypothalamic histaminergic system. However, its role in PD remains unknown.

View Article and Find Full Text PDF

The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons.

View Article and Find Full Text PDF

Although more than 30 different types of neuropeptides have been identified in various cell types and circuits of the cerebellum, their unique functions in the cerebellum remain poorly understood. Given the nature of their diffuse distribution, peptidergic systems are generally assumed to exert a modulatory effect on the cerebellum via adaptively tuning neuronal excitability, synaptic transmission, and synaptic plasticity within cerebellar circuits. Moreover, cerebellar neuropeptides have also been revealed to be involved in the neurogenetic and developmental regulation of the developing cerebellum, including survival, migration, differentiation, and maturation of the Purkinje cells and granule cells in the cerebellar cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Physical exercise can help reduce anxiety, but scientists are still figuring out how it works in the brain.
  • Researchers found a group of brain cells that connect movement (motor) and feelings (emotions) to help lower anxiety.
  • When animals do different types of physical challenges, certain brain parts work together to create a calming effect, suggesting that tough exercises are really good for managing anxiety.
View Article and Find Full Text PDF

The cumulative evidence suggests that oxytocin is involved in the male sexual behaviors. However, no significant sexual impairments were observed in oxytocin gene knock-out (KO) mice, suggesting that oxytocin is not necessary for sexual behavior in male mice. To better understand the role of oxytocin in male erection, two types of oxytocin gene KO mice were created.

View Article and Find Full Text PDF

Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking.

View Article and Find Full Text PDF

Reactive astrocytes play an important role in neurological diseases, but their molecular and functional phenotypes in epilepsy are unclear. Here, we show that in patients with temporal lobe epilepsy (TLE) and mouse models of epilepsy, excessive lipid accumulation in astrocytes leads to the formation of lipid-accumulated reactive astrocytes (LARAs), a new reactive astrocyte subtype characterized by elevated APOE expression. Genetic knockout of APOE inhibited LARA formation and seizure activities in epileptic mice.

View Article and Find Full Text PDF

The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits.

View Article and Find Full Text PDF

Betahistine and gastrodin are the first-line medications for vestibular disorders in clinical practice, nevertheless, their amelioration effects on vestibular dysfunctions still lack direct comparison and their unexpected extra-vestibular effects remain elusive. Recent clinical studies have indicated that both of them may have effects on the gastrointestinal (GI) tract. Therefore, we purposed to systematically compare both vestibular and GI effects induced by betahistine and gastrodin and tried to elucidate the mechanisms underlying their GI effects.

View Article and Find Full Text PDF

Vestibular compensation is an important model for developing the prevention and intervention strategies of vestibular disorders, and investigating the plasticity of the adult central nervous system induced by peripheral injury. Medial vestibular nucleus (MVN) in brainstem is critical center for vestibular compensation. Its neuronal excitability and sensitivity have been implicated in normal function of vestibular system.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that traits like depression can be passed from parents to kids through changes in sperm!
  • In this study, mice whose dads had depression-like traits showed similar symptoms even as babies!
  • Special molecules in the sperm, called miRNAs, change how the baby’s brain develops, which can lead to depression-like behavior!
View Article and Find Full Text PDF

Anxiety commonly co-occurs with obsessive-compulsive disorder (OCD). Both of them are closely related to stress. However, the shared neurobiological substrates and therapeutic targets remain unclear.

View Article and Find Full Text PDF

Ataxia, characterized by uncoordinated movement, is often found in patients with cerebellar hemorrhage (CH), leading to long-term disability without effective management. Microglia are among the first responders to CNS insult. Yet the role and mechanism of microglia in cerebellar injury and ataxia after CH are still unknown.

View Article and Find Full Text PDF

3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a critical role in the development of mammalian brain. Here, we investigated the role of PDK1 in Purkinje cells (PCs) by generating the PDK1-conditional knock-out mice (cKO) through crossing or mice with mice. The male mice were used in the behavioral testing, and the other experiments were performed on mice of both sexes.

View Article and Find Full Text PDF

Spinal α-motoneurons directly innervate skeletal muscles and function as the final common path for movement and behavior. The processes that determine the excitability of motoneurons are critical for the execution of motor behavior. In fact, it has been noted that spinal motoneurons receive various neuromodulatory inputs, especially monoaminergic one.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) is a neuropeptide mainly synthesized in the hypothalamic paraventricular nucleus and has been traditionally implicated in stress and anxiety. Intriguingly, genetic or pharmacological manipulation of CRF receptors affects locomotor activity as well as motor coordination and balance in rodents, suggesting an active involvement of the central CRFergic system in motor control. Yet little is known about the exact role of CRF in central motor structures and the underlying mechanisms.

View Article and Find Full Text PDF

Central orexinergic system deficiency results in cataplexy, a motor deficit characterized with a sudden loss of muscle tone, highlighting a direct modulatory role of orexin in motor control. However, the neural mechanisms underlying the regulation of orexin on motor function are still largely unknown. The subthalamic nucleus (STN), the only excitatory structure of the basal ganglia, holds a key position in the basal ganglia circuitry and motor control.

View Article and Find Full Text PDF

Vestibular compensation is responsible for the spontaneous recovery of postural, locomotor, and oculomotor dysfunctions in patients with peripheral vestibular lesion or posterior circulation stroke. Mechanism investigation of vestibular compensation is of great importance in both facilitating recovery of vestibular function and understanding the postlesion functional plasticity in the adult CNS. Here, we report that postsynaptic histamine H1 receptor contributes greatly to facilitating vestibular compensation.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) is an effective therapeutic target for deep brain stimulation (DBS) for Parkinson's disease (PD), and histamine levels are elevated in the basal ganglia in PD patients. However, the effect of endogenous histaminergic modulation on STN neuronal activities and the neuronal mechanism underlying STN-DBS are unknown. Here, we report that STN neuronal firing patterns are more crucial than firing rates for motor control.

View Article and Find Full Text PDF