Publications by authors named "Jiayin Feng"

Exosomes (Exos) are tiny extracellular vesicles containing a variety of active biomolecules that play important parts in intercellular communication and influence the functions of target cells. The potential of Exos in the treatment of dermatological diseases has recently been well appreciated. This review highlights the constituents, function, and delivery of Exos, with a particular focus on their applications in skin therapy.

View Article and Find Full Text PDF

The intensification of human activities has led to a large amount of nitrogen (N) and phosphorus (P) inputs into water, resulting in an increase in nutrient load and an imbalance of N and P stoichiometric ratio in wetlands. However, whether and how water eutrophication influences phytoplankton diversity, community composition, and biomass remain largely unclear. As part of a two-year (2022-2023) field experiment, this study was conducted to examine the effects of N and P inputs on phytoplankton community in a freshwater wetland in the North China Plain.

View Article and Find Full Text PDF

Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication.

View Article and Find Full Text PDF

Enhancing the sealing between titanium abutment and surrounding soft tissue is crucial for preventing peri-implantitis. Meanwhile, exploring non-invasive antibacterial strategies as alternatives for traditional antibiotic therapy is central to improving the effect of peri-implantitis treatment. Furthermore, facilitating effective integration between titanium implant and osteoporotic bone is the cornerstone for ensuring long-term implant stability in patients with osteoporosis.

View Article and Find Full Text PDF

The human body may suffer multiple injuries and losses due to various external factors, such as tumors, diseases, traffic accidents, and war conflicts. Under such circumstances, engineered protein-based materials, as an innovative adjunctive material, can not only effectively promote the natural repair process of tissues, but also greatly circumvent the negative effects and complications that may be associated with conventional surgery. In this review, we first trace the definition and development of engineered protein-based materials and explain in detail their mechanism of action in promoting tissue repair.

View Article and Find Full Text PDF
Article Synopsis
  • Global change can impact soil carbon inputs, which in turn affect microbial communities and ecological functions.
  • A 13-year study in semi-arid grasslands showed that adding litter did not change microbial diversity, but removing it significantly decreased bacterial and fungal diversity due to less carbon and moisture.
  • Removing plants had an even greater negative effect on microbial diversity and ecosystem multifunctionality, emphasizing the crucial role of plant-derived carbon in maintaining healthy soil ecosystems.
View Article and Find Full Text PDF

Introduction: The low yield of bioflocculants has been a bottleneck problem that limits their industrial applications. Understanding the metabolic mechanism of bacteria that produce bioflocculants could provide valuable insights and strategies to directly regulate their yield in future.

Methods: To investigate the change of metabolites in the process of bioflocculant production by a biomass-degrading bacterium, Pseudomonas boreopolis GO2, an untargeted metabolome analysis was performed.

View Article and Find Full Text PDF

Enhancing terrestrial carbon (C) stock through ecological restoration, one of the prominent approaches for natural climate solutions, is conventionally considered to be achieved through an ecological pathway, i.e., increased plant C uptake.

View Article and Find Full Text PDF

Redistribution of precipitation across seasons is a widespread phenomenon affecting dryland ecosystems globally. However, the impacts of shifting seasonal precipitation patterns on carbon (C) cycling and sequestration in dryland ecosystems remain poorly understood. In this study, we conducted a 10-yr (2013-2022) field manipulative experiment that altered the timing of growing-season precipitation peaks in a semi-arid grassland.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how changes in seasonal precipitation patterns affect plant reproductive timing in a temperate steppe ecosystem.
  • A field experiment was conducted over four growing seasons, focusing on the responses of seven dominant plant species to different precipitation schedules, including control, advanced, and delayed rain peaks.
  • Results showed that earlier precipitation significantly advanced the timing of key growth phases (budding, flowering, and fruiting) and increased reproductive duration for certain species, which may reduce their dominance due to overlapping reproductive periods with other plants.
View Article and Find Full Text PDF

Microspheres are micrometer-sized particles that can load and gradually release drugs via physical encapsulation or adsorption onto the surface and within polymers. In the field of biomedicine, hydrogel microspheres have been extensively studied for their application as drug carriers owing to their ability to reduce the frequency of drug administration, minimize side effects, and improve patient compliance. Sodium alginate (ALG) is a naturally occurring linear polysaccharide with three backbone glycosidic linkages.

View Article and Find Full Text PDF

Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential.

View Article and Find Full Text PDF

The critical impacts of microclimate on carbon (C) cycling have been widely reported. However, the potential effects of global change on wetland microclimate remain unclear, primarily because of the absence of field manipulative experiment in inundated wetland. This study was designed to examine the effects of nighttime warming and nitrogen (N) addition on air, water, and sediment temperature and also reveal the controlling factors in a Phragmites australis dominated freshwater wetland on the North China Plain.

View Article and Find Full Text PDF

Concurrent changing precipitation regimes and atmospheric nitrogen (N) deposition can have profound influences on soil carbon (C) cycling. However, how N enrichment regulates the responses of soil C fluxes to increasing variability of precipitation remains elusive. As part of a field precipitation gradient experiment with nine levels of precipitation amounts (-60 %, -45 %, -30 %, -15 %, ambient precipitation, +15 %, +30 %, +45 %, and +60 %) and two levels of N addition (0 and 10 g N m yr) in a semi-arid temperate steppe on the Mongolian Plateau, this work was conducted to investigate the responses of soil respiration to decreased and increased precipitation (DP and IP), N addition, and their possible interactions.

View Article and Find Full Text PDF

Atmospheric nitrogen (N) deposition and changing precipitation regimes greatly affect the structure and functions of terrestrial ecosystems. However, their impacts on the diversity and assembly of soil microbial communities including bacteria, fungi and protists, remain largely unclear. As part of a six-year field experiment in a secondary forest in a warm temperate and subtropical climate transitional zone in China, we aimed to investigate the responses of soil microbial communities to N addition, increased and decreased precipitation.

View Article and Find Full Text PDF

Soil microbiomes play a critical role in regulating ecosystem multifunctionality. However, whether and how soil protists and microbiome interactions affect ecosystem multifunctionality under climate change is unclear. Here, we transplanted 54 soil monoliths from three typical temperate grasslands (i.

View Article and Find Full Text PDF

Silicosis is a common and ultimately fatal occupational disease, yet the limited therapeutic option remains the major clinical challenge. Apelin, an endogenous ligand of the G-protein-coupled receptor (APJ), is abundantly expressed in diverse organs. The apelin-APJ axis helps to control pathological and physiological processes in lung.

View Article and Find Full Text PDF

Climate warming has profoundly influenced community structure and ecosystem functions in the terrestrial biosphere. However, how asymmetric rising temperatures between daytime and nighttime affect soil microbial communities that predominantly regulate soil carbon (C) release remains unclear. As part of a decade-long warming manipulation experiment in a semi-arid grassland, we aimed to examine the effects of short- and long-term asymmetrically diurnal warming on soil microbial composition.

View Article and Find Full Text PDF

One of the main illnesses that put people's health in jeopardy is myocardial infarction (MI). After MI, damaged or dead cells set off an initial inflammatory response that thins the ventricle wall and degrades the extracellular matrix. At the same time, the ischemia and hypoxic conditions resulting from MI lead to significant capillary obstruction and rupture, impairing cardiac function and reducing blood flow to the heart.

View Article and Find Full Text PDF

Bioflocculant may be a promising bioactivator for heavy metal removal duo to its eco-friendly properties and remarkable ability to adsorb heavy metals. In this study, bioflocculant production from a bacterium, Pseudomonas sp. GO2, was optimized and its removal efficiency for two heavy metal ions was evaluated.

View Article and Find Full Text PDF

Microorganisms colonize plant-associated environments and constitute complex communities aided in key functions for nutrient acquisition, disease suppression and abiotic stress resistance. In this study, we evaluated the variation of root-associated microbiomes of two typical farmland crops, maize (Zea mays L.) and soybean (Glycine max L.

View Article and Find Full Text PDF

Plant-specific root-microbe-soil interactions play an indisputable role in microbial adaptation to environmental stresses. However, the assembly of plant rhizosphere microbiomes and their feedbacks in modification of pollution alleviation under organochlorine stress condition is far less clear. This study examined the response of root-associated bacterial microbiomes to lindane pollution and compared the dissipation of lindane in maize-cultivated dry soils and rice-cultivated flooded soils.

View Article and Find Full Text PDF

Organochlorines are critical soil contaminants and the use of biochar has recently shown potential to improve soil remediation. However, little is known about biochar-microbe interactions nor the impact on environmental processes such as the immobilization and biodegradation of organochlorine compounds. In this study, we performed microcosm experiments to elucidate how biochar affected the biodegradation and sequestration of pentachlorophenol (PCP).

View Article and Find Full Text PDF

Organochlorine pesticides have been extensively used for many years to prevent insect diseases of rice (Oryza sativa L.), but little is known about their residual impacts on the underground micro-ecology in anaerobic environment. In this glasshouse study, we characterized the lindane effects on the assembly of root-associated microbiomes of commonly used indica, japonica and hybrid rice cultivars, and their feedback in turn, in modifying lindane anaerobic dissipation during 60 days' rice production.

View Article and Find Full Text PDF

Nitrification and denitrification are two important processes in the nitrogen (N) cycle. Under heavy-metal pollution with water management of paddy soils, these two processes are not well understood. This study aimed to examine the effect of cadmium (Cd) on N transformation under flooding and non-flooding conditions.

View Article and Find Full Text PDF