Sci China Life Sci
January 2025
Cas12 and Cas13 are extensively utilized in molecular diagnostics for their trans-cleavage activities, yet their activation characteristics remain partially understood. Here, we conduct an in-depth investigation of Cas12a, Cas12f1, and Cas13a, uncovering the characteristics of their trans-DNase and trans-RNase activities with noncanonical activators. Our findings reveal that DNA can serve as a direct target for CRISPR-Cas13a, markedly increasing the detection sensitivity for single-base mismatches.
View Article and Find Full Text PDFBlood-brain barrier (BBB) function deteriorates during aging, contributing to cognitive impairment and neurodegeneration. It is unclear what drives BBB leakage in aging and how it can be prevented. Using single-nucleus transcriptomics, we identified decreased connexin 43 (CX43) expression in cadherin-5 (Cdh5) cerebral vascular cells in naturally aging mice and confirmed it in human brain samples.
View Article and Find Full Text PDFIschemia-reperfusion injury occurs after reperfusion treatment for patients suffering myocardial infarction, however the underlying mechanisms are incompletely understood and effective pharmacological interventions are limited. Here, we report the identification and characterization of the FDA-approved drug disulfiram (DSF) as a cardioprotective compound. By applying high-throughput chemical screening, we found that DSF decreased HO-induced cardiomyocyte death by inhibiting Gasdermin D, but not ALDH1, in cardiomyocytes.
View Article and Find Full Text PDFDiscovery of small molecules promoting cardiomyocyte proliferation is important for heart regeneration and related heart disease. Here, we describe a protocol to isolate neonatal rat and mouse cardiomyocytes, infect cardiomyocytes with Tnnt2-mAG-hGeminin (1/110) or Tnnt2-Cre adenovirus, and identify small molecules that promote cardiomyocyte proliferation by high-content microscopy. This protocol can be modified to investigate other pro-proliferation factors in cardiomyocytes and other cell types.
View Article and Find Full Text PDFAcute myocardial infarction (MI) results in loss of cardiomyocytes and abnormal cardiac remodeling with severe inflammation and fibrosis. However, how cardiac repair can be achieved by timely resolution of inflammation and cardiac fibrosis remains incompletely understood. Our previous findings have shown that dual-specificity phosphatase 6 (DUSP6) is a regeneration repressor from zebrafish to rats.
View Article and Find Full Text PDFDual-specificity phosphatase 6 (DUSP6) serves a specific and conserved function on the dephosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). We previously identified Dusp6 as a regenerative repressor during zebrafish heart regeneration, therefore we propose to investigate the role of this repressor in mammalian cardiac repair. Utilizing a rat strain harboring Dusp6 nonsense mutation, rat neutrophil-cardiomyocyte co-culture, bone marrow transplanted rats and neutrophil-specific Dusp6 knockout mice, we find that Dusp6 deficiency improves cardiac outcomes by predominantly attenuating neutrophil-mediated myocardial damage in acute inflammatory phase after myocardial infarction.
View Article and Find Full Text PDFCell Stem Cell
April 2022
Zebrafish and mammalian neonates possess robust cardiac regeneration via the induction of endogenous cardiomyocyte (CM) proliferation, but adult mammalian hearts have very limited regenerative potential. Developing small molecules for inducing adult mammalian heart regeneration has had limited success. We report a chemical cocktail of five small molecules (5SM) that promote adult CM proliferation and heart regeneration.
View Article and Find Full Text PDFMetabolites
October 2021
Metabolomics has been applied to measure the dynamic metabolic responses, to understand the systematic biological networks, to reveal the potential genetic architecture, etc., for human diseases and livestock traits. For example, the current published results include the detected relevant candidate metabolites, identified metabolic pathways, potential systematic networks, etc.
View Article and Find Full Text PDFInt J Biol Macromol
September 2021
Phycocyanin (PC) is considered to be an effective natural photosensitizer, but it has not been well utilized as its inefficient biostability and intracellular accumulation. To overcome these limitations, the nano-sized PC particles (LAPC/DOX) were developed by grafting with lactobionic acid (LA) and loading with doxorubicin (DOX). Compared to the PC solution, the storage-stability and photostability of PC particles were remarkably increased, and the formation of nanoparticles further improved its biostability.
View Article and Find Full Text PDFHeart regeneration is a fascinating and complex biological process. Decades of intensive studies have revealed a sophisticated molecular network regulating cardiac regeneration in the zebrafish and neonatal mouse heart. Here, we review both the classical and recent literature on the molecular and cellular mechanisms underlying heart regeneration, with a particular focus on how injury triggers the cell-cycle re-entry of quiescent cardiomyocytes to replenish their massive loss after myocardial infarction or ventricular resection.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2021
Pandemic influenza, typically caused by the reassortment of human and avian influenza viruses, can result in severe or fatal infections in humans. Timely identification of potential pandemic viruses must be a priority in influenza virus surveillance. However, the range of host species responsible for the generation of novel pandemic influenza viruses remains unclear.
View Article and Find Full Text PDFJ Genet Genomics
August 2020
Cell Death Dis
February 2018
This study aimed to investigate the role of protein phosphatase 5 (PP5) on bone and cartilage development using both in vivo and in vitro approaches. Six- to 8-week- old male PP5 knockout mice (KO) and their wild-type (WT) littermate controls were randomly selected for this study, and their body weights and bone (femur) lengths were measured. Micro-computed tomography scanning (Micro-CT) was performed to determine femoral bone density and micro-architecture.
View Article and Find Full Text PDF